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Abstract— In autonomous racing, accurately tracking the
race line at the limits of handling is essential to guarantee
competitiveness. In this study, we show the effectiveness of
Differential Flatness based control for high-speed trajectory
tracking for car-like robots. We compare the tracking perfor-
mance of our controller against Nonlinear Model Predictive
Control and resource use while running on embedded hardware
and show that on average KFC reduces the computation
resource usage by 50 % while performing on par with
NMPC. Our implementation of the proposed controller, the
simulation environment and detailed results is open-sourced on
https://github.com/droneslab/.

I. INTRODUCTION

Recently, there has been a lot of enthusiasm in the
research [1] and hobby [2] community in autonomous rac-
ing. This is particularly attractive given these platforms are
affordable (a few hundred to a few thousand US dollars)
and easy to build. This has also led to the rise of several
autonomous racing competitions including the F1tenth [1]
racing at academic and hobby venues. This application
provides an opportunity to revisit previously studied research
ideas in other contexts for autonomous racing where time
optimality requires aggressive maneuvers. Achieving the
fastest lap times requires a race line (time optimal trajectory
across the track) and a tracker to follow it perfectly. A perfect
race line is useless without a tracker that can track it well.
In this work, we employ the idea of differential flatness [3]
and its use in tracking a pre-planned trajectory.
We start with a bicycle model, which has been previously
studied to replicate the dynamics of the vehicle or car-like
robot [4],[5],[6]. Additionally, it is proven to be differentially
flat [7] and is known to be feedback linearizable i.e. the error
dynamics are linear. This lets us apply simple linear feedback
control and guarantee asymptotic stability. Leveraging this
fact, we propose a simple PD controller based on this linear
feedback and compare its performance against Nonlinear
Model Predictive Control (or Non-linear MPC) which is the
state of the art for racing [8], [9], [10]. As effective as MPC
is, it is also quite computationally intensive because it solves
an optimization problem at every time-step. While modern
micro-controllers and single-board-computers (SBCs) have
come quite far, running complete autonomy pipelines on
them still stretches their computational budget. This becomes
more evident when it comes to racing because all aspects
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Fig. 1: Sample Track for F1tenth Autonomous Racing ex-
periments

of the pipeline - perception, state estimation, planning and
control have to be executed at extremely high rates (tens of
Hz) making a lightweight controller desirable. To that end,
we make the following contributions in this work:

• Using the bicycle model kinematic approximation of a
car, we develop a trajectory tracker that leverages the
flatness property of the said model - Kinematic Flat
Controller (KFC)

• Using four tracks in simulation as well as three in the
real world, we compare the tracking performance of the
proposed controller against a Nonlinear Model Predic-
tive Controller (NMPC) for high speed trajectories

• In the process, we made adaptations to the F1tenth
hardware platform as well as the simulator [11] to fit our
model. All of this work is open-sourced on our group
GitHub page1

II. RELATED WORK

The idea of differential flatness introduced by [12] is well
recognized for global trajectory/motion planning problems.
Various robotic systems such as helicopters [13], fixed-
wing air-crafts [14], quad-rotors [15], and unicycle type
robots [16] are considered to be differentially flat. Consid-
erable work has been done when it comes to the control of
car-like robots in flat space - [17] have used the concept
of differential flatness to apply trajectories computed for
the unicycle model to the bicycle model, [18] use flatness
properties to drive on structured motorways, [19] impose
constraints on the flat space to guarantee safety in the state
space, [20] map tire friction forces to constraints in the

1https://github.com/droneslab
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flat space to solve the local steering problem, [21] leverage
the differential flatness property to simplify the trajectory
planning problem. However, the idea has not been evaluated
in the context of tracking aggressive trajectories needed
for racing (we refer the reader to the work of [22] for
a survey of autonomous racing). [23] and [24] show the
effectiveness of differential flatness in tracking aggressive
quad-rotor trajectories and [25] do an extensive study of
NMPC vs Differential Flatness based trajectory tracking for
quad-rotors. But, key differences between the quad-rotor and
bicycle models such as having only 3 DOFs compared to 6
and the presence of non-holonomic constraints motivate us
to re-investigate for car-like (ackermann steered) robots.

III. IMPLEMENTATION

This section describes generation of the reference trajec-
tory, and the designs of Kinematic Flat Controller (KFC) and
the Non-linear Model Predictive Controller (NMPC).

A. Bicycle Model Kinematics

The kinematic model of a simplified car is derived under
the assumption that the vehicle is rear-wheel driven, front
wheel steer and wheels have no slip.ẋẏ

θ̇

 =

V cos(θ)
V sin(θ)
V
L tan(δ)

 (1)

where (x, y) represent the position of the center of the rear
axle, θ is the orientation of the vehicle, and the length of
the wheelbase is L. The input to the system is the forward
linear velocity V , steering angle δ.

B. Trajectory Generation

A trajectory is a time parameterized path along with a
velocity profile. We use cubic splines to parameterize a
given set of waypoints with a fixed length time vector. The
derivative of this spline gives the velocity profile. To fit the
spline we use scipy [26]

Through simulation and experimentation, we classify gen-
erated trajectories into two classes — feasible and infeasible.
Feasible trajectories are ones that obey the limits of the
system dynamics and represent a practical racing scenario.
Infeasible trajectories are characterized by velocity profiles
that are not permissible under system dynamics even though
they are kinematically possible. These include scenarios
such as trying to turn with speeds that are not permissible
under the centripetal forces experienced by the car. These
trajectories represent a real world worst case scenario for
the controllers. They let us test the controllers’ robustness to
model mismatch, external disturbances such as tire slip and
actuator saturation. Further, racing requires operating at the
limits of handling where even the smallest model mismatch
or disturbance can render a feasible trajectory infeasible. In
the following subsections we describe the method used to
generate trajectories of each type.

1) Feasible Trajectories: Dynamically feasible trajecto-
ries require slowing down on the turns. To achieve this, we
compute a time vector that scales the time between waypoints
based on a pre-calculated mapping between instantaneous
curvature (κ) at that waypoint (calculated using the first
curvature [27], [28]) and the max permissible speed at
that curvature. To calculate this mapping, we command the
car with various velocities at maximum steering angle and
measure the curvature of the traversed arc. The data points
gathered from these experiments draw a hyperbolic arc in the
V vs δ plane. Estimating the parameters of this hyperbola
gives a function that maps the curvature κ to the maximum
permissible speed umax,κ.
For computing the time vector, we formulate a minimization
problem constrained by a given max speed Vmax and max
acceleration amax to generate a nearly time-optimal feasible
trajectory for a given set of waypoints on the track

minimize
N∑
i=1

Ti

subject to Ti =

i∑
r=0

∆tr

ui+1 = ui + ai∆ti

umin ≤ ui ≤ argmin(umax, umax,κ)

|ai| ≤ amax

∆ti =
Di

ui

where, u is the velocity, a is the acceleration, umax is
the maximum velocity, umax,κ is the maximum permitted
velocity for curvature κ, umin is the minimum velocity
needed to overcome the inertia, Di is the distance between
the ith and the ith + 1 waypoint and ∆ti is the time taken
to traverse from the ith waypoint to the ith + 1 waypoint.

2) Infeasible Trajectories: The racetracks are a combina-
tion of straights that allow for extremely high speeds and
turns which require the car to slow down to a near crawl
in order to be able to negotiate these turns. To generate
infeasible trajectories a linearly spaced time vector is fit to
the waypoints of the tracks (using cubic splines as mentioned
before) i.e., the reference trajectory consists of a uniform,
nearly constant velocity profile that disregards the shape
of the track. By changing the total amount of time taken
to complete a lap, we can choose the average speed over
the length of the track. This is a simple approach but as
mentioned earlier, lets us evaluate the controllers in a worst
case scenario. The cars are expected to overshoot on the turns
but catch up to the reference on the straights.

C. Kinematic Flat Controller

A system is considered as differentially flat if there exists
a set of outputs (flat outputs), equal to the number of
inputs, such that all the states and controls in state space
can be represented in terms of the selected flat outputs and
their derivatives without integration. The bicycle model is
differentially flat with positions as the flat outputs. Let f1 and
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f2 be the flat outputs, which map to the position coordinates
x and y as [

f1
f2

]
=

[
x
y

]
(2)

Then, the one-to-one mapping between the state space model
and flat space is given by[

ḟ1
ḟ2

]
=

[
V cos(θ)
V sin(θ)

]
(3)[

f̈1
f̈2

]
=

[
V̇ cos(θ)− V θ̇ sin(θ)

V̇ sin(θ) + V θ̇ cos(θ)

]
(4)

Since θ = arctan( ẏẋ ),

θ = arctan

(
ḟ2

ḟ1

)
(5)

Similarly, the forward linear velocity (V ) and steering com-
mand (δ) can be rewritten as

V =
√
ẋ2 + ẏ2 =

√
ḟ1

2
+ ḟ2

2
(6)

δ = arctan

(
Lθ̇

V

)
= arctan

(
L

ḟ1f̈2 − ḟ2f̈1

(ḟ1
2
+ ḟ2

2
)

3
2

)
(7)

Let U1 and U2 be the virtual controls in flat space:

f̈1 = U1 (8)

f̈2 = U2 (9)

we define the linear feedback law in a Proportional-
Derivative (PD) manner with a feed-forward term as

U1 = f̈1
d
+K1ėf1 +K2ef1 (10)

U2 = f̈2
d
+K3ėf2 +K4ef2 (11)

where superscript (.)d is reference trajectories, e(.) = fd
(.) −

f(.) is error feedback and K1 −K4 are the control gains.
Rearranging the eqn. (10) and (11) yields

ëf1 +K1ėf1 +K2ef1 = 0 (12)
ëf2 +K3ėf2 +K4ef2 = 0 (13)

It can be seen that the error feedback dynamics are linear,
and as long as control gains are positive the feedback errors
asymptotically go to zero. Since the proposed feedback
controls are designed in a flat space, they need to be mapped
back to the coordinate space for real-time implementation.
As derived earlier, the mapping from [U1, U2] to flat space
is given by [

U1

U2

]
=

[
V̇ cos(θ)− V θ̇ sin(θ)

V̇ sin(θ) + V θ̇ cos(θ)

]
=

[
cos(θ) −V sin(θ)
sin(θ) V cos(θ)

]
︸ ︷︷ ︸

A

[
V̇

θ̇

]
(14)

Inverse of the matrix A leads to :

V̇ = U1 cos(θ) + U2 sin(θ) (15)

θ̇ =
U2 cos(θ)− U1 sin(θ)

V
(16)

Flat space
controls to
state space

controls

Reference
Trajectory

Flat space
control Law

state space output to
flat space output

-
+

Fig. 2: KFC Feedback Control Block Diagram

Since the input to the system is V and δ

V =

∫
V̇ dt (17)

δ = arctan

(
L

V 2
(U2 cos(θ)− U1 sin(θ))

)
(18)

Note that when V goes to zero, the matrix A becomes a
singular matrix making δ to be undefined. To avoid this issue,
we used a method from [29]. We define a threshold velocity
VT

V =

{
VT when |V | ≤ VT

V when |V | > VT

(19)

where VT is a small positive value. One of the potential
shortcomings of using this idea is that the car loses its
ability to move backward. However, in the context of racing,
backward maneuvers are not required. The proposed control
architecture is summarized in Fig. 2.

D. Nonlinear Model Predictive Controller (NMPC)

To generate the control commands, NMPC solves a finite
time optimal control problem (OCP) in a receding horizon
fashion. For a given reference trajectory, the cost function is
calculated using the error between the predicted states and
the reference points in the time horizon. States and inputs are
discretized into N equal intervals of the time horizon T ∈
[t, t+h] with dt = h/N where h denotes the horizon length.
Our implementation of NMPC is based on [30]. Using the
bicycle model kinematics to predict the states, we formulate
a nonlinear optimization problem that is solved at every time
step as follows

minimize
N−1∑
j=0

uT
j Ruj +

N∑
i=1

(Xref,i −Xi)
TQ(Xref,i −Xi)

subject to Xi+1 = f(Xi, ui)

|uj+1 − uj | ≤ [∆amax,∆δmax]
T

X0 = Xinit

u ∈ [umin, umax]
T

Where,
R = diag(Racc, Rsteer), is the penalty on the controller
effort. Q = diag(Qx, Qy, Qθ, Qv), is the weight matrix and
Qx, Qy, Qθ, Qv are the weights associated with the error
for each state. Xi = [xi, yi, θi, vi], (x, y) is position, θ is
yaw, v is forward velocity. u = [a, δ], a is acceleration, δ is
the steering angle (v is calculated from a using integration),
∆amax,∆δmax are used to limit jerk and erratic steering,
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f(x) =


xi+1

yi+1

θi+1

vi+1

 =


xi + vi cos(θi)dt
yi + vi sin(θi)dt

θi +
vi tan(δi)dt

L
vi + aidt


as per the bicycle model kinematics.

Solving this optimization problem yields [ai, δi]. We use
the method described in eqn. (17) to obtain a [vi, δi] which
are the control inputs to the car.

IV. EVALUATION

This study aims to evaluate the competitiveness of differ-
ential flatness for autonomous car racing by answering the
following questions

1) How does the position tracking performance of KFC
compare to NMPC?

2) What is the computation effort needed for each con-
troller?

Through extensive simulation as well as real-world exper-
imentation across multiple trials, we demonstrate that the
kinematics-based flatness controller is a superior approach
and competitive compared to Non-linear MPC.

A. Experimental Setup

Simulation: The simulation setup uses Gazebo11, ROS
Noetic, and builds upon the work of [11] to meet our
requirements. Major changes include but are not limited to,
remodeling the vehicle from all-wheel drive to rear-wheel
drive as per bicycle model kinematics, modeling the dynam-
ics of the simulated vehicle to match those of the actual car,
increasing the speed limit and matching the steering limits
to that of the real car. The simulation parameters (friction,
actuation limits, maximum acceleration) were tuned to match
its behavior to the real car. This was done by commanding
the real and simulated car with an input and matching the
resulting output through trial and error. Experiments were
conducted on 1/10

th scale F1 tracks provided by F1tenth
GitHub [31]. The tracks chosen were - IMS (292 m), Monza
(446 m), Silverstone (457 m) and Oschersleben (260 m).
As with the real-world experiments, multiple runs were
conducted at each max speed per track

Experiment: The testing platform is built using a modified
version of the hobby RC car chassis - Traxxas Slash 4x4.
Modifications include converting it from all-wheel-drive to
rear-wheel-drive, eliminating the suspension and lowering
the center of gravity. Experiments were conducted on 3 tracks
at different max speeds - a loop (20 m), a figure 8 pattern
(30 m) and a U-shaped loop (30 m). Multiple runs were
conducted at each max speed per track. All experiments were
conducted in an environment with a VICON motion capture
system for ground truth.

B. Metrics to Evaluate Tracking Performance

The tracking performance of each method is evaluated
based on 3 metrics -

• Root Mean Square (RMS) of the position tracking
error (rmsep) calculated as the perpendicular distance
between the nearest point of path to be tracked and the
executed path. This metric is chosen because deviating
from the optimal path can result in an increase in lap
time.

• RMS of the trajectory tracking error (rmset) reveals
how well the position is tracked in time i.e. where the
car is supposed to be at that time instant vs where
it actually is. This is crucial to racing because it lets
us quantify the time sacrificed to achieve the position
tracking accuracy.

• Maximum deviation from the centerline (ϵ): Because
the controller is evaluated in the context of racing, we
use this metric to measure if the car overshoots the
track boundary. For infeasible trajectories, it also lets us
record the worst overshoots on extremely tight turns.

C. Measuring Resource Utilization

The controllers were implemented in Python using ROS
Noetic on the Nvidia Jetson Xavier NX running jetpack
5.1. Across all the tests (simulation and real world) usage
stats were logged using the process IDs of the controller
process. The controllers were implemented as ROS nodes
that were run on the Jetson and run at 100Hz. When running
simulations, the rosmaster and the simulator were run on
a different computer and the controller nodes connected to
them over the network. For both the controllers all the cubic
spline interpolation was done using SciPy [26] For NMPC,
CasADi [32] was used to solve the nonlinear optimization
problem.

D. Simulation results

Given that the limit of the car is 15 m/s in the simulation,
the maximum speed tested for is 12 m/s to let the controllers
have some margin to operate within. Feasible trajectories
for Vmax ∈ {8, 10, 12}m/s were tested across all tracks.
These max speeds were chosen because this is where the
controllers start failing for infeasible trajectories. For speeds
lower than 8m/s feasible trajectories performed better than
their infeasible counterparts and the performance of both
controllers was similar. These results have not been tabulated
to save space but will be made available on our GitHub.
Table I presents the results for individual tracks for speeds
> 8m/s. From the data, it can be seen that there is no
clear winner and both methods perform similarly for all
speeds when it comes to rmset. NMPC shows marginally
better results for rmsep and ϵ. We note that despite these
trajectories being feasible, both controllers struggle at high
speeds as can been seen from large values for max. deviation
especially at higher speeds on track 3d.

For infeasible trajectories, Table II presents the results for
each individual track. On tracks 3c and 3d neither controller
converges back on to the track in reasonable time once there
is an overshoot for speeds higher than 7 m/s and no data is
recorded. Conversely, we noticed that for track. 3a and track.
3b the results for 6 and 7m/s were nearly identical to the
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(a) IMS (b) Monza (c) Silverstone (d) Oschersleben

(e) Loop (f) Figure 8 (g) U-Loop

Fig. 3: Center-lines of the race tracks tested on. Top row has tracks tested in simulation and bottom row has real world
tracks

TABLE I: Simulation results for feasible trajectories

Track Avg. Speed
Method

KFC NMPC
µ rmset σ µ rmsep σ µ ϵ σ µ rmset σ µ rmsep σ µ ϵ σ

IMS
8 0.2529 0.034 0.2056 0.034 0.8566 0.05 0.3181 0.008 0.0596 0.009 0.2881 0.069

10 0.3539 0.032 0.2661 0.035 0.9187 0.095 0.3457 0.008 0.083 0.007 0.3989 0.037
12 0.5792 0.075 0.5095 0.065 1.9259 0.133 0.3595 0.013 0.0826 0.007 0.348 0.072

Monza
8 0.5575 0.022 0.3698 0.017 2.4215 0.117 0.8025 0.008 0.1991 0.013 1.1947 0.129

10 0.6651 0.01 0.4417 0.011 2.7088 0.106 0.9045 0.004 0.1871 0.012 1.8055 0.14
12 0.6824 0.041 0.4557 0.02 2.7358 0.123 0.9503 0.006 0.1844 0.005 1.1244 0.108

Silverstone
8 0.6338 0.029 0.4097 0.009 2.3961 0.115 0.7682 0.002 0.365 0.002 1.9831 0.032

10 0.793 0.037 0.5195 0.028 3.422 0.277 0.8982 0.008 0.4041 0.006 2.0945 0.071
12 0.8179 0.026 0.549 0.017 3.5955 0.189 0.9565 0.006 0.3972 0.01 2.1061 0.073

Oschersleben
8 1.0396 0.028 0.4389 0.029 1.9817 0.171 0.7379 0.086 0.5186 0.087 3.5435 0.502

10 1.1044 0.047 0.4484 0.027 2.3037 0.216 0.735 0.043 0.5239 0.051 3.6847 0.555
12 1.091 0.025 0.4504 0.025 2.1384 0.081 0.8039 0.095 0.5844 0.095 3.9409 0.707

TABLE II: Simulation results for infeasible trajectories

Track Avg. Speed
Method

KFC NMPC
µ rmset σ µ rmsep σ µ ϵ σ µ rmset σ µ rmsep σ µ ϵ σ

IMS

5 0.1678 0.01 0.0614 0.012 0.3794 0.158 0.2715 0.011 0.0305 0.002 0.1282 0.012
8 0.3727 0.043 0.2383 0.058 0.8688 0.07 0.5105 0.049 0.0697 0.003 0.2986 0.018

10 0.4614 0.044 0.2426 0.062 1.0601 0.429 0.6299 0.054 0.1115 0.01 0.4926 0.087
12 0.8229 0.085 0.5981 0.101 2.1172 0.346 0.7912 0.039 0.1278 0.016 0.6762 0.189

Monza

5 0.5947 0.124 0.2933 0.041 2.5874 0.716 0.4546 0.007 0.1454 0.011 1.0987 0.142
8 1.2623 0.352 0.7826 0.176 4.1392 1.888 0.9513 0.031 0.2896 0.016 1.4825 0.108

10 1.8026 0.079 1.0903 0.037 4.7622 0.172 2.3195 0.055 1.3282 0.112 8.0575 0.8
12 3.1727 0.154 1.7966 0.155 7.2841 0.306 5.1239 0.171 3.3295 0.176 18.3838 1.059

Silverstone
5 0.7932 0.073 0.3003 0.022 2.2886 0.406 0.7018 0.004 0.3322 0.007 1.6577 0.098
6 1.0042 0.086 0.3771 0.067 2.4373 0.614 0.9113 0.02 0.4591 0.01 2.8928 0.168
7 2.2831 0.492 0.8071 0.177 4.8148 1.735 1.6229 0.058 0.9191 0.031 5.6837 0.289

Oschersleben
5 0.8584 0.05 0.3426 0.01 1.1911 0.069 0.648 0.031 0.2706 0.01 1.191 0.128
6 1.2993 0.07 0.4627 0.028 1.7284 0.327 1.3127 0.059 0.5087 0.041 2.3236 0.177
7 1.8816 0.141 0.5602 0.035 2.3023 0.294 2.652 0.066 1.1607 0.019 4.1502 0.253

TABLE III: Real world results for optimal feasible trajectory

Track Avg. Speed
Method

KFC NMPC
µ rmset σ µ rmsep σ µ ϵ σ µ rmset σ µ rmsep σ µ ϵ σ

IMS 5 0.0929 0.009 0.056 0.004 0.1664 0.021 0.5861 0.235 0.1898 0.089 0.8444 0.537
Figure 8 5 0.114 0.01 0.0732 0.006 0.2139 0.059 0.4558 0.072 0.1519 0.036 0.5738 0.31
U - Loop 5 0.1132 0.019 0.0523 0.002 0.1874 0.028 0.4304 0.054 0.1435 0.029 0.6308 0.228
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TABLE IV: Real world results for infeasible trajectories

Track Avg. Speed
Method

KFC NMPC
µ rmset σ µ rmsep σ µ ϵ σ µ rmset σ µ rmsep σ µ ϵ σ

Loop

1.0 0.13 0.05 0.0636 0.008 0.2667 0.058 0.3541 0.075 0.1387 0.043 0.5833 0.254
1.5 0.1897 0.017 0.111 0.009 0.4815 0.057 0.4302 0.038 0.1303 0.034 0.4451 0.196
2.0 0.447 0.035 0.2271 0.009 0.7639 0.016 0.5214 0.029 0.1487 0.003 0.4551 0.033
3.0 - - - - - - 0.6677 0.039 0.2635 0.042 0.8918 0.17

Figure 8

1.0 0.1688 0.004 0.0946 0.002 0.2672 0.011 0.3411 0.029 0.123 0.016 0.3949 0.158
1.5 0.3278 0.006 0.1966 0.006 0.591 0.024 0.4687 0.004 0.1414 0.005 0.3573 0.03
2.0 0.7422 0.079 0.2393 0.105 0.7995 0.028 0.6419 0.01 0.1768 0.002 0.4827 0.01
3.0 - - - - - - 0.9209 0.019 0.261 0.01 1.0266 0.017

U - Loop

1.0 0.5023 0.098 0.2812 0.105 1.0001 0.38 0.4624 0.142 0.1645 0.024 0.683 0.23
1.5 0.7363 0.179 0.1989 0.054 0.8659 0.17 0.4881 0.037 0.156 0.031 0.658 0.127
2.0 - - - - - - 0.6825 0.052 0.2191 0.018 0.8731 0.106
2.5 - - - - - - 0.7382 0.045 0.2541 0.024 0.8432 0.026

TABLE V: Resource utilization by both methods

Method CPU (%) Memory (%)
KFC 8.7373 0.7336
NMPC 15.3693 0.8825

results of 5 m/s so they have not been reported in the table.
Once again, we see that there is no clear winner. Also, ϵ
shows that both controllers deviate beyond the boundary of
the track for all speeds except 5m/s. Additionally, the trend
of NMPC consistently having lower position tracking error
and max. deviation disappears.

E. Real-world results

Given the small size of the tracks in the real world, the
maximum speed tested for infeasible trajectories is 3m/s.
Table IV presents the results for individual tracks. As with
the simulation, we see that both the controllers perform
similarly. However, the performance of KFC degrades at
higher speeds to the point that it cannot execute infeasible
trajectories for speeds greater than 2 m/s within the ϵ limits
whereas NMPC can (in the limited motion capture space,
KFC crashes into the track boundary)

In the area of the motion capture setup, there was only
one possible optimal trajectory with a Vmax = 5m/s and
|amax| = 0.5m/s2. Lower Vmax resulted in trajectories
nearly identical to infeasible trajectories with speeds of 1,1.5
m/s. For Vmax = 5m/s, the trajectory often maxes out
acceleration to the max permissible value. For the feasible
trajectory, Table III presents the results for individual tracks.
We observe that NMPC’s performance is within the range
of its performance for infeasible trajectories i.e. it shows no
improvements, whereas KFC has improved by a significant
margin and showcases extremely low rmset, rmsep and ϵ.

F. Resource Usage

Table V shows the resources that each controller used on
the testing platform. NMPC uses twice as much CPU as KFC
but both methods require the same amount of memory.

G. Inference

To summarise, given a feasible trajectory that produces
smooth accelerations, the performance of KFC is on par with

MPC. For other cases, while the data may show that there
are instances where NMPC is marginally better, it comes at
the cost of 2x more computational overhead. Additionally,
the performance of NMPC is highly sensitive to the size of
the receding horizon and the discretization step. In following
paragraphs we discuss in detail the pros and cons of each
and give a detailed analysis of our observations to justify our
claim.

All the tests in simulation reveal that KFC keeps up with
NMPC or is slightly better. As mentioned earlier, there is
no consistent trend in the results that show one method
outperforming the other. Any difference in performance is
marginal. For example, if we compare the results at 5m/s
for infeasible trajectories on the Monza track we can see
that NMPC does better with a performance delta of 0.1401
m. However, considering that the length of the track is 446m
(IV-A) we argue that this marginal difference does not justify
the 2x increase in the computational cost.

In the experiment, we can see that for infeasible trajecto-
ries, at low speeds the results are consistent with simulation.
However, when it comes to higher speeds, large values of ϵ
prevent KFC from safely executing the trajectories but this
is not the case for NMPC. This is due to the fact that ac-
celerations from NMPC are smoother than the accelerations
from KFC. The smoother accelerations are a result of the
jerk constraint in the formulation as well as due to the fact
that the predictions over a finite time horizon make NMPC
react to turns earlier resulting in a less overshoot at the turns.
In contrast, KFC tracks only one point in the reference and
has no constraints on jerk which results in a late deceleration
for turns. This causes a non-trivial degree of skid which is
large enough to be observed visually without the aid of any
sensors. Due to the skid, KFC has low tolerance to high jerk
when there is not enough traction.

On feasible trajectories, KFC outperforms NMPC with
extremely low errors and ϵ across the board. On the other
hand, results for NMPC are similar to its results for infeasible
trajectories. This is inconsistent with the simulation tests
where we see drastic improvements in its performance. Due
to the small size of the track in the real world, there is a
minor difference between the states that NMPC optimizes for
in the predictive horizon. Fig. 4 shows the difference between
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(a) (b) (c) (d)

Fig. 4: Effect of time horizon on real tracks (4a, 4b) vs simulated tracks (4c), 4d for NMPC. Blue markers are the references
in the receding horizon

(a) (b)

Fig. 5: Effect of size of the receding horizon on different kinds of turns for NMPC

predictive horizon for feasible trajectories and infeasible
trajectories in the real world, 4a (feasible) and 4b (infeasible),
and simulation, 4c (feasible) and 4d (infeasible). It can be
seen that in the simulation, there is an appreciable difference
between the states that NMPC is optimizing for (the size of
the time horizon and dt is the same in both cases). The length
of the effective arc, in simulation, for a feasible trajectory is
≈ 4.05m and ≈ 7.2m for infeasible, which is a significant
increase. In contrast, in the real world, the effective length
of the arcs is ≈ 1.8m for feasible and ≈ 2.2m for infeasible
(the size of the time horizon and dt is the same in both
cases as before). From Fig. 4 we can also visually see that
in real life NMPC is more or less optimizing for the same
states. This results in the performance of NMPC not differing
for feasible and infeasible trajectories. Tuning the horizon
any further, also does not guarantee optimal performance
across the entire track. Fig. 5 shows the effect of size of
the receding horizon on different types of turns. It can be
seen that for tighter turns 5b a larger horizon results in large
deviations from the reference (large horizon results in an
undershoot while a small horizon results in under-actuation
and sub-optimal control), whereas shallow turns 5a are not as

sensitive to the size of horizon. On race-tracks that naturally
have a large variation in turns, this is not desirable because it
implies that the controller has to be tuned per track. [33] and
[30]also identify this problem and the former try to address
it with an adaptive horizon based on the curvature of the
trajectory. While, effect of the size of the receding horizon
in NMPC is desirable when the trajectories are infeasible,
it can result in inconsistent performance for different tracks.
Additionally, the low computation overhead of KFC frees
up the CPU for other critical components in the autonomy
pipeline.

V. CONCLUSION & FUTURE WORK

The results of this study shows the competitiveness of
differential flatness based controller for tracking high-speed
aggressive trajectories for autonomous racing cars. We show
that the performance of our proposed controller is on par with
the current standard approach for autonomous racing, model
predictive control, while having a low computational over-
head.Our implementations of both controllers and trajectory
generation assumes a perfect bicycle model and considers
only kinematics. The positive results of KFC encourage us
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to incorporate full state dynamics for both the controllers
as well as trajectory generation and reevaluate their perfor-
mance in the future.
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