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High-performance Racing on Unmapped Tracks using Local Maps
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Abstract— Map-based methods for autonomous racing esti-
mate the vehicle’s location, which is used to follow a high-
level plan. While map-based optimisation methods demonstrate
high-performance results, they are limited by requiring a map
of the environment. In contrast, mapless methods can operate
in unmapped contexts since they directly process raw sensor
data (often LiDAR) to calculate commands. However, a major
limitation in mapless methods is poor performance due to a
lack of optimisation. In response, we propose the local map
framework that uses easily extractable, low-level features to
build local maps of the visible region that form the input
to optimisation-based controllers. Our local map generation
extracts the visible racetrack boundaries and calculates a
centreline and track widths used for planning. We evaluate
our method for simulated F1Tenth autonomous racing using
a two-stage trajectory optimisation and tracking strategy and
a model predictive controller. Our method achieves lap times
that are 8.8% faster than the Follow-The-Gap method and
3.22% faster than end-to-end neural networks due to the
optimisation resulting in a faster speed profile. The local map
planner is 3.28% slower than global methods that have access
to an entire map of the track that can be used for planning.
Critically, our approach enables high-speed autonomous racing
on unmapped tracks, achieving performance similar to global
methods without requiring a track map.

I. INTRODUCTION

Methods for autonomous vehicles can be grouped into
map-based or mapless methods. Classical map-based meth-
ods use a perception, planning, and control stack to es-
timate the vehicle’s pose, calculate an optimal trajectory
and then track it [1]. Map-based methods are limited to
contexts where maps that can be used for localisation exist.
In contrast, mapless methods do not require a map since
they calculate control commands directly from the incoming
sensor measurements. Current mapless methods of reactive
algorithms [2] and end-to-end neural networks [3] achieve
poor performance and low completion rates. In response, this
paper addresses the problem of high-performance racing on
unmapped tracks.

Map-based methods are limited to contexts where an
accurate map has been built, and localisation is available.
Autonomous vehicles should be able to operate in contexts
where maps are unavailable or where the environment has
changed since the map was built. For example, self-driving
cars must operate in GPS-denied environments where local-
isation on a map is not possible [4]. Mapless vehicle control
is difficult due to the challenges in directly interpreting
sensor data such as LiDAR scans or camera images. This
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Fig. 1. Local map racing pipeline; (1) receive LiDAR scan, (2) extract
LocalMap, (3) calculate optimal trajectory.

has resulted in most optimisation-based planning methods
focusing on situations where prebuilt maps are available [5].

In this paper, we propose using easily extractable, low-
level features to build local maps that can be used for
optimisation-based planning and enable high-performance
control in unmapped environments. We present this solution
in the context of simulated F1Tenth autonomous racing on
unmapped tracks [6]. Fig. [T] shows how our approach uses
the LiDAR scan to construct a representation of the visible
environment that is used for optimisation-based racing. We
evaluate our method with a two-layer optimisation and
tracking strategy [7], and a single-layer Model Predictive
Contouring Control (MPCC) algorithm [8]. We compare our
methods to state-of-the-art mapless approaches of end-to-
end neural networks [9] and the Follow-The-Gap (FTG)
algorithm [2].

II. LITERATURE STUDY

Fig. [2| shows how autonomous racing methods can be
split into classical methods, which use a perception and
optimisation-based planning approach, and mapless methods,
which use reactive control algorithms.
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Fig. 2. Map-based planners using a perception and optimisation-based

strategy compared with mapless methods.

A. Classical Racing

Classical racing methods use a perception, planning and
control pipeline to move the vehicle around the track as
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quickly as possible. Racing tracks are typically mapped
using a Simultaneous Localisation And Mapping (SLAM)
algorithm that requires a slow pass around the track to build
a map [10]. During the drive through the map, the estimated
odometry is fused with incoming LiDAR scans and/or cam-
era images and used to build a map [11]. Localisation for
autonomous racing is most commonly done with a scan-
matching estimation algorithm that uses incoming odometry
and sensor measurements to estimate the vehicle’s location
[12], [13]. While localisation methods, such as particle filters,
provide robust, accurate localisation, they are inherently
limited by requiring a map of the race track. That makes them
unsuitable for racing in unmapped or dynamically changing
environments.

Classical racing typically uses a trajectory optimisation
strategy to generate planning references of speed and steering
angle. It is common to use a two-stage planning approach
of calculating an optimal trajectory [7] and then following it
with a path-following algorithm, such as pure pursuit [14],
[15]. Another approach is to use a single-layer model pre-
dictive control (MPC) to directly optimise control commands
that result in an optimal trajectory for a receding horizon [8],
[16]. While optimal control strategies are effective for high-
performance racing, they are limited by requiring a map of
the track and the vehicle’s current location.

B. Mapless Racing

Mapless methods have been widely studied in the navi-
gation literature, where the general problem is to move a
holonomic robot from one point to another [17]. One of
these methods, Follow-The-Gap [2], has been adapted (also
known as the disparity extender algorithm) to autonomous
racing where it has won a race [18]. However, these methods
have no inherent model for speed selection and thus cannot
operate the vehicle near the performance limits.

Another upcoming method is end-to-end deep learning,
which uses a neural network to map raw sensor data directly
to control commands. Bosello et al. [19] demonstrated that
these methods can generalise to unseen race tracks. Current
shortcomings in these methods are high-crash rates, even in
simulation [20], the simulation-to-reality gap [21], and jerky
action selection [9].

We aim to retain the high-performance nature of
optimisation-based racing without requiring a global map.
We do this by building a local map of the visible region that
can be used for classical planning methods.

- Calculated segments = Normal vectors

Projected segments

mmmm Centre line

Local map extraction: the track boundaries are identified and used to calculate a centre line and normal vectors of the visible region.

III. METHODOLOGY

We present the local map framework in the context of
autonomous racing, where vehicles have a 2D LiDAR sensor
for input and must select speed and steering actions that
move the vehicle around the track as quickly as possible.

A. Local Map Extraction

The local map extraction uses the 2D LiDAR scan to build
a set of centre line points and track widths that can be used
for planning. Fig. [3] graphically illustrates this process, and
Algorithm [I| provides pseudo code for the implementation.

Algorithm 1 Local map extraction algorithm
1: Receive LiDAR scan 1

Z = {][li cos(6;), l;sin(6;)]} > Scan to Cartesian points
7 — Blong - pshort > Identify boundaries
Resample boundaries with n'°"¢ and n*"" points
S=g > Initialise segment list
for i = 0, n'°"¢ do

distances = {|b"" — by ¥ j € [0, nhr)}

k; = argmin(distances)

if [b" — by < Wiy then

Append b, bj"] to S

else
12: Rlong ¢ plongfj ; plong] 1 Remaining long line
13: Rehort — Rlong 4 normals(R") X wiack
14: Append [R'°"¢ Rshort] o §
15: break out of for loop
16: end if
17: end for
18: Use list .S to calculate centre line and track widths
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Fig [3| (1), shows the vehicle’s LiDAR scan as a set of
points, defined by distances at set angles from the LiDAR
scanner. Line 2 of the pseudo-code describes how they are
converted to Cartesian points, Z, in the vehicle’s inertial
frame, by multiplying by the corresponding angles 6;. The
LiDAR’s number of beams Nye,ms and field-of-view angle A
are used to calculate the set of angles as,

{*A/2 +nx A/Nbeams‘n € [07 17 ) Nbeams}}

. Fig [3] (2) shows how the set of points is split into left and
right track boundary lines. Pseudocode lines 3 and 4 explain
that the boundaries are treated in the categories of long and
short and resampled to have equidistant points.



Lines 6-10 describe the progress to generate the green
lines in Fig |3| (3). For each point in the long boundary
b\, the distances to all the points on the short boundary
are calculated (line 7). The nearest point b;j‘;’” is found by
taking the argmin of the distance array (line 8). If the distance
between the points is smaller than the maximum track width
Wmax, then the segment is added to the segment list S (line
10). For the section where both boundaries are visible, this
process finds track segments approximately normal to the
track direction.

Lines 11-16 explain how the centre line is extended where
only the longer boundary is visible. Line 12 identifies R
as the long line section from the last segment added until
the end of the line. The normals function returns the
normal vectors indicating the direction across the track to
the other boundary. The estimated short boundary R*h" is
then calculated in line 13 by adding the long boundary and
the normal vectors multiplied by the track width wiack. The
estimated segments R!°" and R*"", shown as turquoise lines
in Fig. 3] (3) are added to the segment list S.
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Fig. 4. Local map segment extraction (left) and a final local map (right)
for segments of the AUT track. The purple arrow represents the car’s pose.

The left image in Fig. [4] shows an example segment
extraction, with the blue dots representing the LiDAR scan,
the green lines representing the calculated segments, and
the turquoise lines representing the projected segments. The
green line segments ensure that the centre of the track is
calculated since both boundaries are known. The turquoise
line segments assume the track has a constant track width
and that the borders are parallel to each other. The segment
list is used to find the track centre line by adding finding
the points in between the two boundaries. The line is then
resampled to have equidistant points, and the track widths
are calculated. The right image in Fig. [4| shows the resulting
local map centre line and normal vectors that is returned and
used for planning.

B. Optimisation Planners

We implement two standard planning techniques: a two-
stage optimisation and tracking approach and a single-layer
model predictive controller. These planning strategies are
used with either global maps of the entire track and locali-
sation or a local map.

1) Two-stage Optimisation Planner: Fig. [5] shows how
the two-stage planner generates an optimal trajectory that is
tracked using the pure pursuit algorithm. We use the optimi-
sation approach presented by Heilmeier et al. [7], generating
a minimum curvature path and then a minimum time speed
profile. The optimisation generates a path by minimising the
curvature, which is defined as the rate of change in the
heading. A forward-backwards solver calculates the speed

profile by selecting the fastest speed at each point that keeps
the vehicle within the friction limits and is dynamically
reachable.

Pure pursuit
controller
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Fig. 5. The two-stage planner generates an optimal trajectory that is tracked
with a pure pursuit controller

The pure pursuit formula [22] (shown on the right in
Fig. ) calculates a steering angle that tracks an upcoming
waypoint that is lookahead distance /4 away, at an angle of

« as,
Isi
6 = arctan (sm(a)) (1)
la
The lookahead distance is selected based on the speed as,
la=1.+1s xV where [, and [ are hyperparameters and V'
is the vehicle speed.

2) Model Predictive Contouring Control: We adapt the
Model Predictive Contouring Control (MPCC) algorithm
presented by Liniger et al. [8] to Fl1Tenth racing. The optimi-
sation represents the vehicle state as position and heading and
the inputs as steering and speed for a finite number of steps.
Successive states are constrained to the vehicle dynamics,
where a kinematic bicycle model is used to update the states
based on the control inputs. Additionally, the trajectory is
constrained to lie within the track boundaries.
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Fig. 6. The MPCC algorithm plans a receding horizon trajectory of speed
and steering angle references that maximises centre-line progress.

Fig. [6] shows how the MPCC algorithm plans a finite
trajectory by selecting speed and steering angle references.
Since the nearest point on the reference path cannot be
directly found, an approximate point on the centre line is
used and added as an additional state to the optimisation
variables. A lag error penalises the difference between the
approximate centre line point and the true point along the
trajectory. A contouring error encourages the trajectory to
track the centre line. A progress objective promotes progress
along the path, and a control regulation term encourages
smooth control actions.



IV. EVALUATION
A. Methodology

The evaluation compares local map planners with global
map planners and mapless methods. We implement the two
optimisation strategies presented in Section with the
global and local planners. We use baseline mapless methods
of end-to-end neural network controllers [9] and the FTG
method [2]. We train end-to-end agents with the SAC and
TD3 reinforcement learning algorithms using two hidden
layers of 100 neurons, the trajectory-aided learning reward
and 60,000 training steps on the GBR map.

QA s o

Fig. 7. The AUT, ESP, and GBR (left to right) track maps.

We evaluate our method for FlTenth autonomous racing
using the simulator presented by O’Kelly et al. [6]. The
vehicle is represented using the single-track bicycle model,
and the dynamics equations are updated at 100 Hz. All the
planners are run at 25 Hz, and at each planning step, a
steering angle and linear speed must be selected to control
the car. Fig. [/| shows the AUT, ESP and GBR maps used for
simulation testing. We conduct the following tests:

1) Local map extraction: We investigate our pipeline’s
ability to extract local maps

2) Racing performance comparison: We compare the
lap times and speed profiles of the planners

3) Computational requirements: We measure the com-
putation of each algorithm

B. Local Map Extraction

We investigate the local map extraction pipeline that uses
the incoming 2D LiDAR scan to generate a local map. We
measure the length of the centre lines of the extracted local
maps for each track by using the pure pursuit algorithm to
track the centre line at a low, constant speed.
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Fig. 8. Calculated and projected local map lengths compared to curvature.

Fig. [8] shows the calculated and projected local map
lengths compared to curvature for a lap on the AUT track.
The centre line lengths show a pattern of downward slopes
followed by sharp rises. The curvature graph shows that the
sharp rises appear after a curvature spike, indicating that the

Statistic AUT ESP GBR

Mean + Std. dev. 11.05 £ 4.52 11.10 & 4.76 11.03 £ 4.77

Min, Max 3.44, 21.35 2.57, 25.96 2.64, 25.96
TABLE I

THE MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM LOCAL
MAP LENGTHS FOR THE AUT, ESP AND GBR TRACKS.

sharp rise is the straight that is suddenly visible after turning
a cElgll| shows that the maps have a mean centre line length

of around 11 m, with a standard deviation of around 4.5 m.
The local map lengths range between 2.57 m and 25.96 m.
We conclude that the centre line can robustly be extracted
and used for planning for the entirety of the track.

C. Racing Performance Comparison

We investigate the racing performance of the global and
local optimisation planners, the Follow-The-Gap algorithm
and the SAC and TD3 end-to-end agents. For each planner,
five test laps are run with random start positions, and the
average times from completed laps are presented.
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Fig. 9. Normalised lap times from the SAC and TD3 agents, FTG method,
and global and local MPCC and two-stage planners.

Fig. 0] shows a bar graph of the lap times for each planner,
normalised by dividing by the mean lap time for each track.
The end-to-end agents and Follow-The-Gap method have the
slowest times on all the maps. The global and local planners
achieve fast times, with the two-stage planners outperforming
the MPCC planners. Therefore, we study the performance
of the two-stage planners, TD3 agent and Follow-The-Gap
method in detail.

Map TD3 FTG Global Local

AUT 19.13 (1.5%) 19.11 (1.4%) 18.52 (-1.8%) 18.85

ESP 41.95 (4.5%) 4577 (14.1%) 3897 (-2.9%)  40.13

GBR 36.71 (3.6%) 39.31 (11.0%)  33.58 (-52%) 3542

Mean 3.22% 8.80% -3.28% -
TABLE II

LAP TIME IN SECONDS (% DIFFERENCE FROM THE LOCAL PLANNER)
FOR THE TD3, FTG, AND GLOBAL AND LOCAL TWO-STAGE PLANNERS.

Table [ shows the lap times and percentage difference
from the local planner. The local map planner outperforms
the TD3 agent by 3.22% and the Follow-The-Gap planner



by 8.8%. We investigate this result by plotting the trajectory
segments on the ESP map in Fig.[TI0] The FTG planner takes
a short, smooth path but has poor speed selection due to not
using a model of the track. The end-to-end planner selects
a more appropriate speed profile, but the trajectory is not
smooth, and consequently, the vehicle selects conservative
speeds. The local MPCC planning speeds up in the straights
and slows down in the corners while selecting a smooth path.
This fast performance outperforms other mapless methods.
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Fig. 10. Trajectory segments on the ESP map of the follow the gap, end-
to-end and local MPCC planners.
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Table [lI| shows that the global two-stage planner achieves
faster lap times on all the maps than the local two-stage
planner. On average, the global planner lap times are 3.28%
faster. We investigate this by plotting trajectory segments for
a portion of the GBR map in Fig. [TT] The two trajectories
show a similar pattern of speeding up to high speeds in the
straighter sections and slowing down enough for the corners,
with the local planner slowing down more in the turns.
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2

Fig. 11. Global and local two-stage planner trajectories on the GBR map.

Fig. [12] shows the speed profiles from the global and local
two-stage planners on the AUT track. The global planner
smoothly speeds up and slows down due to its ability to
optimise the profile over the entire track. In contrast, the local
planner shows more extreme behaviour of quickly speeding
up to the maximum speed and slowing down to low speeds
of around 2 m/s in the corners.
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Fig. 12. Comparison of speed profiles from global and local two-stage

planners on the AUT track.

Fig.[I3]shows two example local racelines with the vehicle
location represented by the purple arrow. These racelines

illustrate the limited visible planning horizon, which results
in the local planner selecting a conservative trajectory.

Speed [m/s]

N b OO

Fig. 13. Local racelines generated by the two-stage planner on AUT.
Our approach outperforms previous state-of-the-art ap-
proaches to autonomous racing of end-to-end neural net-
works and the Follow-The-Gap method by achieving lower
lap times and smoother paths. The reason for this is that
using local map representations of the visible track enables
the use of an optimisation strategy. In comparison to global
planning methods, our approach shows only a 3% perfor-
mance drop. The drop is explained by the local map planner’s
conservatism around corners due to the lack of visibility. The
local map planner selects a speed profile similar to the global
planner’s while using only the currently visible local map.

D. Computational Requirements

We investigate the perception and planning computation
times of the racing algorithms. The perception refers to
localisation using a particle filter for the global planners and
local map generation for the local planners. All the tests are
written in Python, run on an Intel i7-10700 desktop computer
running Ubuntu 22.04 and use the cProfile library.
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Fig. 14. Computation times for perception and planning on ESP.

Fig. [T4] shows each planner’s average perception and
planning computation times. The Follow-The-Gap algorithm
takes around 0.3 ms to plan, followed by the end-to-end
agent taking around 1.2 ms. The global planners have
perception (localisation) times of around 1 ms, and the
local planners have longer perception (local map generation)
times of around 10 ms. The two-stage planners run quickly,
taking only 0.1 ms for the global and 0.3 ms for the local
planner. The dashed black line shows the time required to
run the algorithm at 25 Hz (40 ms). The global and local
MPCC algorithms exceed the time constraint for real-time
computation. The local map planner can run in real time if
combined with an efficient algorithm.

V. CONCLUSION

This article presented the local map framework for
optimisation-based control in unmapped environments. The



LiDAR scan was used to extract a local map of the visible
area for F1Tenth autonomous racing. Our method extracted
local maps that could be used for input to an optimisation
strategy for planning. Local maps with an average of 11
m can be extracted from differently shaped racetracks. Our
two-stage local map planner achieves lap times 3.22% faster
than end-to-end agents trained with the TD3 algorithm and
8.8% faster than the Follow-The-Gap method. The primary
improvement source is the local map planner’s access to a
vehicle dynamics model that can be optimised. The com-
parison with global planning approaches showed an average
of 3.28% slower lap times, resulting from limited planning
horizon around corners and thus reduced speed. Critically,
our approach removes the limitation of global approaches
in requiring a track map and localisation and, thus, enables
high-performance racing on unmapped tracks.

A. Future Work

Image-based Control: Image-based control is difficult
due to the large variability in images. Image-based mapping
and localisation methods are computationally expensive, and
end-to-end methods have not yet demonstrated satisfactory
results [23]. However, the local map framework could use
an edge detection algorithm to detect track boundaries and
build a local map. Extracting low-level features can be used
to enable high-performance image-based control.

Local Map Fusion for High-speed SLAM: Once a lap of
a race track has been completed with the LocalMap planner,
the local maps could be fused together to form a global
map. Further, this can be extended to a full racing-optimised
version of SLAM that builds a map in real-time by fusing
successive local maps and estimating the difference. This will
result in efficient, high-speed racing SLAM.

Safe Reinforcement Learning: Safe reinforcement learn-
ing, where the agent learns onboard a physical vehicle, has
previously required a track map to build a kernel of safe
states [24]. Previously, safe learning was limited to mapped
contexts where localisation was available. Using local maps
would enable a kernel of safe states to be built online, thus
enabling safe learning to occur on unmapped tracks. Safe
learning has the potential to achieve high-performance racing
since it avoids the simulation-to-reality gap.
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