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ABSTRACT

Autonomous cars involve problems with control and planning. In this
paper, we implement and evaluate an autonomous agent based on
a Monte-Carlo Tree Search in continuous action space. To facilitate
the algorithm, we extend an existing simulation framework and use
a GPU for faster calculations. We compare three action generators
and two rewards functions. The results show that MCTS converges
to an effective driving agent in static environments. However, it only
succeeds at driving slow speeds in real-time. We discuss the problems
that arise in dynamic and static environments and look to future work
in improving the simulation tool and the MCTS algorithm. See code,
https://github.com/felrock /PyRacecarSimulator
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INTRODUCTION

In this chapter we state the problem definition, the constraints we are
subjected to and our contributions.

1.1 PROBLEM DEFINITION

A bird’s eye view of the problem is the following, have a small car
drive on a track without crashing and finishing laps as fast as possi-
ble. This is to be done on a real miniature-sized car. The car format is
part of an on-going intelligent vehicles competition called Fi-Tenth,
and it is one-tenth of the size of an everyday car. The vehicle will be
used to evaluate the effectiveness of agents and how fast actions are
computed. Effectiveness is measured by comparing the performance
of the different agents. The speed of action computation is limited to
the hardware available on the car. The driving task is to navigate in
static and dynamic environments.

For an agent to perform well in a race, it needs to make good de-
cisions on what action to take in any given scenario. The actions
are speed and steering angle. Our solution to finding good actions
is to mirror the current state in a simulation that runs on the on-
board computer, then simulates different actions and chooses one.
To simulate different actions, we use a method called Monte-Carlo
Tree Search(MCTS). We also implement Follow the gap(FTG), Policy
driver and RRT* for comparison and to use as MCTS policy. Two reac-
tive methods and one method that has a global planner. The car has
LiDAR and odometry data available as input. To our knowledge, a
real-time MCTS has not been used as a self-driving car solution.

The agent evaluates a given position and state of the car and output
an action to perform. Monte-Carlo Tree Search(MCTS) is combined
with a neural network policy which will be trained on a dataset. The
policy is used to reduce unnecessary action sampling. The dataset has
LiDAR points and steering angle corresponding to the input and out-
put of the neural network. Preparations need to be made in order to
facilitate MCTS. A birds eye view structure of the track, represented
as a 2D map. The map is retrieved using a SLAM method, as the car
is being driven by a reactive agent. Localizing while driving is also
necessary for MCTS, here we use a particle filter. For the policy we
used a MLP trained on driving data from several tracks. Each part is
explained more in depth in Chapter 3.
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INTRODUCTION

1.2 BACKGROUND

Today’s research in Cyber-Physical Systems(CPS) is rapidly increas-
ing, specifically autonomous vehicles(AV). The modern full-scale plat-
forms are not just expensive, they’re also some of the most complex
designed CPS. A broad majority of the experiments are done in very
isolated environments, in simulations or on very restricted hardware
designs.

What the creators of F1/10" are presenting is an autonomous racing
cyber-physical platform and it’s enabling the ability to address re-
search and education for future autonomous systems [20]. It’s cheap
and it fits indoor. The project started out through a co-operative en-
gagement among three universities in USA and Italy. Currently it’s
used in more than twenty institutions world wide and increasing.

1.3 RESTRICTIONS
1.3.1 Contest

The organizers of the competition have set a number of restrictions
on the hardware for the vehicle.

1. A 1/10 scale rally car chassis equivalent to the Traxxas model
74054 type is allowed.

2. Only the use of stock tires, or equivalent - in size and profile, is
allowed.

3. Use of Nvidia Jetson TX2 or an equivalent capability processor
or anything of lower spec is allowed.

4. Use of Hokuyo 10LX or an equivalent LiDAR range sensor or
anything with a lower specs allowed.

5. There are no restrictions on the use of cameras, encoders, or
custom electronic speed-controllers.

6. Use of Brushless DC motor equivalent to Velineon 3500 or any-
thing of lower spec is allowed.

7. It is up to the teams to demonstrate that they meet the above
specifications.

1 http://fltenth.org/race.html
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1.4 PURPOSE

1.3.2 Environment

The competition environment and our experiment environment will
have the following characteristics.

e Very small amount of reflective surface.
o At least a width of 1.5m.

e 20-30cm rim along the edges of the course.

Figure 1: A race track build at Halmstad university sport center.

1.4 PURPOSE

According to World Health Organization(WHO)?, 1.35 million people
and increasing die every year in road traffic accidents. A vast majority
of the accidents are caused by the state of the driver, e.g. angry or
sleepy. The sensors of a self-driving car are eliminating these faults
and autonomous driving is the key aspect toward safer roads. There
have been a few incidents with AVs and in one particular case in
early 2018 it led to the death of a pedestrian. By utilizing the F1/10
test-bed, there is only material damage risks and more challenging
algorithms can be tested. Pushing autonomous driving forward has
been done in the past with other contests, such as the DARPA Grand
Challenge[26].

https://www.who.int/violence_injury_prevention/road_safety_status/2018/
en/
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INTRODUCTION

1.5 LIMITATIONS

The limitations that are being faced in this project is mostly the com-
puting power. All software is going to be running on a Nvidia Jetson
TX2 module. Since it’s going to be on a car, the calculation time is
required to be minimal in order to act in time.

1.6 CONTRIBUTION

With this work we contribute with implementing and evaluating a re-
inforcement learning method that has showed very promising results
on games. The evaluating process will extend to testing simulation
speeds and effectiveness of driving. Effectiveness of driving is mea-
sure by visually logical driving actions and average lap times.

Our contribution with this work are the following,

e Implement and evaluate a MCTS with a policy network trained
on LiDAR data for self-driving planning.

e Compare MCTS with different reactive methods, computation
speeds and effectiveness of driving.

e Extending current Fi-tenth simulation environment, enabling
parallelization for faster computations in static environments.

[June 14, 2020 at 9:45 — version 1.0 ]



LITERATURE SURVEY

In this section we provide information about existing research that is
relevant to our problem definition.

2.1 AUTONOMOUS DRIVING

Self-driving cars are complex, and creating a general solution driver
has been a prominent research topic in quite some time now. Back
in the '8os, D. Pomerleau [22] showed that a vehicle could be con-
trolled with a neural network end-2-end solution, ALVINN. DARPA
hosted an off-road self-driving challenge [19], the competition re-
sulted in pushing the research forward with autonomous cars such as
Stanley[25] and BOSS[31] two cars that won the race. Bojarski et al[4]
presented a CNN end-2-end driver, where raw data is linked to steer-
ing angles. Do et al[7] is an example of the method Bojarski et al[4]
presented, tested on a small RC-car controlled with a Raspberry pi
following lines similar to guidelines on real roads. Bansal et al[3] pre-
sented an imitation learning framework called ChauffeurNet, using a
mid-level representation of data. Nordmark et al[18] used MCTS for
decision making in a driving scenario for highway driving. They use
fused sensor data as an input to make a decision and then create a
trajectory. The MCTS expansion test different routes, and when the
iteration is done, the best path in the tree is chosen.

2.2 SIMULATION

Cars are an expensive commodity, and there are limitations to test-
ing complex driving scenarios that could occur, many driving tasks
are therefore simulated. Simulations need to be realistic. Some of
the open-source driving simulations are TORCS[29] and CARLA[8].
Where TORCS emulate a racing environment and CARLA for every-
day driving, see Figure 2, 3. Game agents have been shown to learn
complex problems in simulated environments, for example, AlphaZero[24],
where a game agent learned to play the game of Go, Shogi, and Chess
only with self-play. AlphaZero using an MCTS combined with a pol-
icy in self-play, and the previous agent AlphaGo used a policy that
was trained on recorded games. Reinforcement learning models have
also shown to learn strategy in complex games with incomplete infor-
mation, such as AlphaStar[27], where they pre-train the agents with
supervised learning and then self-play to improve. Pan et al[21] pre-
sented a framework of encoders and decoders to bridge the gap be-

[June 14, 2020 at 9:45 — version 1.0 ]



LITERATURE SURVEY

tween simulation and reality, and train a reinforcement learning agent
using this method.

Figure 2: TORCS Figure 3: CARLA

2.3 CONTINUOUS ACTIONS SPACES FOR MCTS

Robot navigation and other problems with similar dynamics often
have a continuous action space, for example, controlling a servo. For
controlling a self-driving car, the action space is continuous for both
steering and speed control. Moerland et al[17] proposed a method
that builds on previously mentioned AlphaZero[24]. Where their pro-
posed neural network outputs a continuous density instead of a dis-
crete action space using a progressive widening and limiting the out-
put bound. Yee et al.[30] extends MCTS to continuous actions space
using kernel regression. Where their proposed method, KR-UCT pri-
oritizes nodes that have more visits, and actions are shared through
the kernel. Continuous action space has an advantage over discrete
action space, which most of the papers brought up in the previous sec-
tion used. Discrete action spaces for continuous problems are promi-
nent in stuttering in navigation while continuous are smoother.

2.4 POLICY LEARNING

Finding a general driving policy equal to a human’s ability is a hard
task. Since there are many different types of driving, for example,
highway driving and urban driving. The driving types have differ-
ent heuristics for the human driver, e.g., on the highway, it’s vital to
keep a good distance between cars, and in an urban environment, it
is important to keep an eye out for pedestrians. Achiam et al[1] pro-
posed a method called CPO(Constrained Policy Optimizing), which
optimizes a policy given some constraints for a reinforcement learn-
ing task. They showed this with a simulated robot locomotion task,
where the constraints are safety. LeCun et al[11] is introducing a way
to learn policies on observational data only. Their proposed way is
to train a policy by unrolling a learned model of the environment
dynamics while specifically penalizing two costs. The cost the policy
wants to optimize, and an uncertainty cost is a deviation from the

[ June 14, 2020 at 9:45 — version 1.0 ]



2.5 LOCALIZATION

states it’s trained on. They're evaluating their approach on a dataset
taken from traffic cameras of a highway. Highway traffic is very dense
with unpredictable actions. Their best model achieved 74.8 4-3.0% suc-
cess rate, where 100% is human driving. The evaluation consisted of
two measures: whether the controlled car reaches the end of the road
segment without collision or driving off the road. The distance trav-
eled before the episode ends. Crankshaw et al[16] proposed a meta-
policy network, for deep reinforcement learning. The meta-policy, us-
ing previously learned policies with similar structure, achieved 2.6x
rewards than the next best policy, in a driving simulation. These pol-
icy methods are trained using reinforcement learning, while our pro-
posed method is supervised learning. However, using constraints for
not crashing is applicable and would increase the vehicle’s overall
safety.

2.5 LOCALIZATION

Being able to localize a vehicle in any given map is crucial for path
planning, there are numerous ways of doing this. In the fitenth testbed
case, there are computation limits as well. The extended Kalman filter
(EKF), which was first introduced in 1974 by A. Gelb [10], was consid-
ered a standard in the theory of nonlinear state estimation, navigation
systems and global positioning systems (GPS). It has a low computa-
tional cost, but it assumes Gaussian nature of noise. What the EKF
is trying to do is to find a simplified model of the problem and then
find an exact solution, but with complex models, sometimes that’s not
enough. Therefore particle filters were introduced, it uses the whole
complex model, but the solution is an estimation. P. Del Moral in-
troduced it in 1996 [6]. Both EKF and particle filters belong to the
Bayesian filters. A Bayesian filter is a general term used to estimate a
state in a dynamic system from sensor measurements by predicting a
future value given past and current observations.

In robot localization, it’s crucial to have multi-modal hypotheses about
where the robot might be. The EKF can only handle one hypothesis,
and if that is incorrect, it’s hard to recover. Particle filters can have
the same amount of hypothesis as there are particles. In practice, the
EKF typically requires the starting point of the robot to be known.
The main idea of particle filters in localization is based on Monte-
Carlo methods. It can handle non-Gaussian problems discretizing
each data point into a particle where each particle is representing
different states. It was introduced in 1999 by D. Fox et al. under the
name Monte-Carlo localization (MCL) [9].
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2.6 PREVIOUS F1/10 PROJECTS

F1/10th is a competition format that has been held by many organi-
zations before, both for urban driving and racing. The competition
starts with a course following the build, simple drive implementa-
tions, and ultimately a race. TunerCar[2] is a previous F1/10 project,
controlled by an MPC(Model Predictive Controller), wherein each
time-step, several simulations of actions are tested. Kungliga Tekniska
Hogskolan(KTH) has also participated in F1/10 competition[s]; the
car used a one and two-layer MPC.

Other projects that use the 1/10th format are [12], where the main
focus is driving correctly in an urban environment, lane follows, such
as [7] which is also in the 1/10th format.
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METHODOLOGY

In this chapter we provide information about the approach, algo-
rithms and frameworks that are used in this project.

3.1 APPROACH
3.1.1 Expanding on the Problem Definition

For path planning, some problems arise. The planned path should
be limited to physical movements and the size of the car. The action
space for the vehicle is ample, trying all actions is an impossible task.
To be able to search for a path in a simulation, the simulation needs to
approximate the physicality of the car and be able to simulate LiDAR
scans. Simulating LiDAR is costly, and it needs to be done for each
update in the simulation to validate each state. For a static environ-
ment, it’s possible to perform LiDAR scans in parallel since the map
does not change with time. However, for a dynamic environment, it’s
not possible to do in parallel, and it makes simulating LiDAR in a
dynamic environment more costly than in a static one.

3.1.2 Deployment

Understanding how everything will fit together, an explanation of
what must be done for the vehicle to drive around the track will be
provided in this section, also see Fig. 4. The individual parts will be
described in more detail in further sections.

Initially, the race track needs to be mapped, and it is done through
a technique called simultaneous localization and mapping (SLAM).
The vehicle is driven by a reactive method algorithm around the track,
and once it is done, the map is stored. The next step in the process
is to create a global path for the AV to follow. The path is captured
by driving the car around the track manually, and the coordinates are
logged to a file.

[June 14, 2020 at 9:45 — version 1.0 ]
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Figure 4: The deployment workflow.

3.2 ALGORITHMS AND CONCEPTS
3.2.1  Simultaneous Localization And Mapping(SLAM)

Hector SLAM is available as a package for ROS[14]. It allows a ve-
hicle to map a region while simultaneously localizing within that
region. Hector SLAM needs no odometry and uses low computation
resources. Hector SLAM is launched as a ROS node and publishes a
map and current pose data.

3.2.2 Localization

For localization, we use a particle filter, as explained in section 2.5.
We are utilizing a fast Monte-Carlo localization algorithm developed
at MIT by C. Walsh and S. Karaman in 2017 [28]. They are proposing
a method that is accelerating the ray casting in a two-dimensional
occupancy grid. It is robust against unmapped obstacles. In simplicity,
the algorithm is casting rays from different positions in the map and
then compare it with the real LiDAR data to find the location.
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Figure 5: Red particles simulates the vehicles position, visualized with Rviz.

Ray Marching

There are numerous ways of finding edges with ray casting, but from
the results presented in Walsh’s and Karaman'’s paper, the RMGPU
outperformed the other methods. First off, it’s utilizing the GPU but
also using a technique called ray marching. Ray marching is itera-
tively trying to find an intersection by using a circular search space.
The radius represents the distance to the nearest obstacle, see Fig. 6.

Figure 6: Visualization of ray marching where Qg is the hypothesized posi-
tion.

3.2.3 Motion Planning

Motion planning is a term frequently used in the field of robotics. It’s
used to find a sequence of actions for a robot to move from one state
to another. It will use its input to produce actions and, in this case,
send it to the ESC. The actions are speed and steering angle. When
working with motion planning, there are four types of workspaces,
configuration, free, obstacle, and target space, see Fig. 7.

[June 14, 2020 at 9:45 — version 1.0 ]
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¢ Configuration space, describes the position and direction of the
robot, but also the set of all possible configurations, represented
as (x,y,0).

e Free space, is the set of configurations that will avoid any colli-
sion with an obstacle.

e Obstacle space, is the space the robot can’t move to.

e Target space, is the subspace of free space which the goal of
the robot is. In the global perspective the target space is always
observable, but in the local perspective it isn’t always the same
case. It’s solved by generating sub-goals in the observable space.

Target

Free
Space

Space
Sub- /

goal

Obstacle
Space

I wall

Planned
Path

u

Vehicle

Figure 7: Motion planning in the different work spaces.

In high dimensional motion planning the sampled-based algorithms
are currently considered the state-of-the-art, e.g. A*.

3.2.4 Monte Carlo Tree Search

Monte Carlo Tree Seach(MCTS) is an algorithm that evaluates deci-
sions by exploring states in a tree structure. This requires a simulation
tool to evaluate each state. The algorithm has four phases, Selection,
Expansion, Simulation and Backpropagation.

Node selection is made with Upper Confidence bounds applied to
Trees(UCT), where nodes are selected for visitation based on their
reward, total visitations in the tree, and node-specific visitations, see
Eq. 1. It is using the uncertainty in the action estimation to balance
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3.2 ALGORITHMS AND CONCEPTS

exploration and exploitation. Exploitation is benefiting in the short-
term by selecting a greedy action to get the most reward. Exploration
is benefiting in the long-term by improving the knowledge about each
action.

n(n)

ny

UCT; =X+ Cx

(1)
Where:

e X; is the reward over visitations of the child.

e n is the number of visitations of the parent.

e n; is the number of visitations of the child.

e Cis an exploration constant.

Most selection functions, including UCT, require every action to be
simulated once, this is not applicable in continuous action spaces. A
solution to this is progressive widening. It is limiting the number of
actions evaluated in a node based on the visits. Once the best avail-
able action is estimated, it will consider additional actions. The tree
grows deeper in the promising parts according to UCT, and progres-
sive widening assures it grows wider in the same part through ex-
pansion. The decision is determined by Eq. 2. The decision is based
on keeping the number of actions bounded to the number of visits.
Nodes with high visitations are more likely to expand. If the child
hasn’t expanded before, the state is passed to the policy network to
produce an action. The other children do not use the policy network
because the neural network will predict the same action for every
child. Therefore an approach where the action is generated from an
interval created from the initial prediction is used.

IS na <A @
acA

Where A is actions considered in state, and n, is the number of
visitations of a child.

Simulation or rollout is when a new node has been created, and to
validate its state; random actions are done. A rollout is a set of actions
that are uniform random moves. In discrete problems, e.g., chess, a
rollout is finished until the game is decided, win, loss or draw. In our
case, that is not possible; therefore, the rollout is set to a fixed number
of actions. A rollout is done either if the node is terminal or until the
specified iteration count is fulfilled. It is terminal if the vehicle has
crashed.
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Backpropagation is used to calculate a branch’s total score by adding
every node’s reward. It is then later used to determine the best possi-
ble action.

Figure 8 is an illustration of a theoretical scenario for an MCTS, where
S are states and leaves of the graph are actions. Following the graph,
the MCTS is selecting a node based on UCT and then expanding
by generating a new action using the neural network. Next up is
to do a rollout to evaluate the action and the reward achieved from
the rollout is added to the parents through backpropagation. This
compiles one MCTS iteration. The number of iteration is limited to a
computational budget, which is the time the MCTS is allowed to use
to predict an action.

Backpropagauun Simulation

Figure 8: S; are states in the simulator and each has a reward.

3.3 FRAMEWORKS
3.3.1  Testbed

The test bed is an RC-car with a computation module, designed by F1-
Tenth. The complete guide to building is available online and is part
of a contest format called F1-Tenth. The car is running a Ubuntu 18.04
arm version on an Nvidia Jetson TX2, with sensors such as Hokyuo
10LX, Intellisense depth camera, and an IMU. A speed controller,
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VESC6, is used to control velocity and steering. All these components

are controlled in software by ROS, where each part is a ROS-node.

See Figure 9.

Figure 9: F1-Tenth racing car

3.3.2 Robot Operating System

Robot Operating System(ROS) is a collection of tools and libraries.
It provides a lot of useful functionalities such as message passing
and package management. The recommended parts of the F1-Tenth
format are supported by ROS.

3.3.3 Simulation

The simulation framework is called racecar simulator; it’s available
on Github?. It's written in C++ and is built to work as a ROS node.
The simulation needs a map to be able to simulate LiDAR points,
the map is stored in a vector, and the map resolution is 2048x2048.
LiDAR points are simulated using a ray-tracing technique, and each
LiDAR point is a ray-trace. Configurable parameters are, weight and
size of the car, LIDAR points to simulate, and field of view. These
parameters are configured to our car, and the field of view is set to
270 degrees centered in front of the vehicle.

1 https://github.com/mit-racecar/racecar_simulator
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In this chapter we provide results from the development experiments
conducted.

4.1 ALGORITHMS

In this section we provide information about the algorithms that the
self-driving agents use.

4.1.1  Follow The Gap

FTG is a well known reactive method that can avoid obstacles in a
map. It has been used in previous fitenth competitions where in 2018
they won the competition. It’s searching for the closest point and cre-
ates a "bubble" with a fixed radius and points within are set to zero
to indicate that they are out of the equation. Then it’s measuring gaps
in the lidar data, a gap is a sequence of measurements of which it’s
higher than a certain threshold, the gap with the largest sequence is
the gap to follow. There are numerous approaches of where in this
gap the vehicle should go, e.g. straight in the middle or the point
which has the largest measurement. Following the middle showed
superior performance. This method is used to gather the map with
SLAM.

4.1.2  Rapidly Exploring Random Tree (RRT)

RRT is a sampling-based path planning algorithm developed in 1998
by S. Lavalle [15]. It’s a fairly quick search algorithm which is gener-
ating points randomly and connects to the closest node and it creates
a tree-like structure until it has reached the goal region. The major
problem with RRT is that the path is often not optimized.

Therefore an optimized version called RRT* came along but not until
2011 [13]. The first key addition to the algorithm is a cost feature,
which is the distance each vertex has traveled relative to the parent.
As the closest node is found the RRT* is utilizing a neighborhood
around the node and if a node with a lower cost is found, the node
gets replaced. That is the second key addition, rewiring of the tree.
See Fig. 10 for a comparison of the different techniques developed in
python for demonstration purposes.

17
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(a) RRT (b) RRT*

Figure 10: Path planning with max 500 iterations.

The RRT* algorithm is implemented as the local planner with a dy-
namic occupancy grid, enabling it to navigate through a map that has
objects which are not present in the original map. An occupancy grid
is a binary mapping of obstacles. It is following the principles men-
tioned in section 3.2.3. A value of 0 represents free space and 1 is for
obstacle space, which can be the original map and also new obstacles. It
is created from the lidar scan callback. At each measurement in front
of the vehicle, a bounding box of obstacle space is created. Any tra-
jectory calculated by the RRT* that intersects with the obstacle space
will be declined. The occupancy grid is dynamic to solve the issue
with dynamic objects leaving their mark on the grid. Meaning after a
certain amount of boxes, it removes them in a first-in, first-out (FIFO)
manner.

The RRT* algorithm was implemented as the planner together with
an occupancy grid explained in section 3.2.3. The occupancy grid is
updated through the LiDAR scan callback. A demonstration in simu-
lation can be seen in this video, RRT*.

4.2 DATASET

The dataset was gathered during multiple sessions on different tracks.
It consists of lidar data and actions taken by the VESC, in this case,
steering angle and velocity. The vehicle was driven either by man-
ual control or a reactive method, such as FTG. The steering angle is
measured in radians and velocity is in meters per second, see Fig.
11 for the distribution of the steering angle and lidar measurement
distances. Because of the limitations on the physical aspects of the
vehicle the steering angle has a limit of +0.42 radians. The lidar data
consists of 1081 data points which demonstrates a distance in meter
to the obstacle, with a max distance of 15m.
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4.2 DATASET

Distance distribution

(a) Steering angle (b) Distance

Figure 11: Data distribution of steering angle and lidar distance. Steering
angles above zero is left and vice versa.

Looking at the steering angle distribution and mean distance (fig. 12),
some similarities indicate a small bias. The dataset contains more left
actions and also the mean distance value for left (index = 9oo) are
lower than right (index = 180). This means it prefers to stay closer to
the left wall.

[] 200 400 600 800 1000
Lidar measurement index

Figure 12: The mean distance for each lidar measurement. Blue lines are the
points go degrees to the sides.

The dataset is divided into two groups, real and simulated. To gen-
eralize a problem, a vast amount of data is needed, and due to time
constraints, the data couldn’t only consist of real scenarios, hence the
simulated group. The simulated group was created by driving a car
in the simulation environment used by the MCTS. It was driving on
maps that is not included in subgroup real. The primary purpose of
the dataset is to train a neural network that will act as a policy for the
MCTS. The policy network is operating in a simulated copy of the
real scenario, and therefore it will be acceptable to have a simulated
part of the dataset. The total amount of data points is 31 963.
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Table 1: F;, being a lidar point’s distance in meter. Angle and velocity is the
action taken by the vesc.

Input Output
Type # F1 | F2 |..|F_1081 || Angle | Velocity

1 0.768 | 0.768 | ... | 1.912 0.370 2.0
2 0.759 | 0.773 | ... | 1.896 0.381 2.0

Real : : e : : :
15 660 | 1.598 | 1.592 | ... | 0.860 || -0.045 5.05
15 661 | 1.627 | 1.623 | .. | 0.855 -0.049 5.05
1 1.243 | 1.245 | ... | 0.812 || -0.121 3.5
2 1.279 | 1.282 | ... | 0.824 -0.135 3.5

Simulated : : : : : :
16 301 | 0.353 | 0.361 | ... | 1.729 0.391 3.0
16302 | 0.332 | 0.342 | .. | 1.791 0.401 3.0

Different scenarios are demonstrated in Fig. 13 from subgroup, real.
The vehicle is driving on a map collected in a hallway at Halmstad
University. The colored points in the graphs are the 1081 lidar mea-
sures with the distance weighted in color. In each scenario, the action
taken at that time is discretized for demonstration purposes. In sce-
nario a) and d), there also exists an obstacle, which is the anomaly
along the right wall. Obstacles are present to avoid any possible bias
to completely straight walls.
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(a) Full left turn

(c) Straight

(d) Slight left turn

Figure 13: Example scenarios from the dataset.

4.3 NEURAL NETWORK

The neural network that will act as the policy will
be of type regression, since it’s in a continuous ac-
tion space. The purpose of the neural network is

to predict the steering angle. It will be used to re-
duce the search space of actions. The network is
constructed using the open-source library Keras?’,

which is running on top of Tensorflow?. From the

original dataset 720 lidar points were used. Orig- Figure 14: NN
inally it has a 270° view but after reduction, the FOV
NN only uses 180°. It is only using 720 points be-

cause the rest of the points are behind the vehicle and therefore not
of interest. The final model is a multilayer perceptron(MLP) with four

hidden layers, see Fig 15.

1 https://keras.io/
2 https://www.tensorflow.org/
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Hidden

Input Layers

Output

Relu ) Relu  Relu Relu
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720 64 128 128 64 1

Figure 15: Proposed MLP architecture.

The proposed model was used together with Adam optimizer, a learn-
ing rate of 0.001, the batch size was set to 24 and 100 epochs with
mean squared error as the loss function. The dataset was split accord-
ingly, training = 23 092, validation = 4076 and testing = 4795. The
input is then normalized and the model is trained in a supervised
manner with steering angle as output. The validation set is used dur-
ing training to validate each epoch. With early stopping, the model
can avoid overfitting, and this is done whenever the validation error
starts increasing above a certain threshold. Overfitting will increase
the generalization error of the model, and must be avoided.

Model Training Loss

—— Train

0012
‘Validation

0010

0008

WSE

0008

0004

0002

Epoch

Figure 16: Training over 100 epochs.
On the test set, the model achieved a mean absolute error (MAE) of

0.0324. But this is on data that is very similar to the training data.
Thus new data was collected.
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4.3.1  Generalization

A generalization set was collected, it consists of 3958 data samples.
It was collected on maps that exist in the training dataset but were
gathered at a later occasion, which gives a slight difference in the
positioning. To visualize the performance of the policy network, a
FTG agent was driving around a map and then let the policy network
predict the steering angle. It was done on a u-shaped map built at
Halmstad University, see Fig. 19.

(a) MAE = 0.129 radians. (b) MAE = 0.103 radians.

Figure 17: A FTG agent driving around a map two ways with the policy
output grouped and added to demonstrate what the policy is
predicting.

A mean absolute error of 0.116 radians on the generalization test in-
dicates that the policy network can distinguish whether it’s a left or
right turn well. The model will be used as a policy for the MCTS.

Libraries

Keras is an exstension of Tensorflow but with inference, it comes with
some overhead; therefore, the model was converted to a TensorFlow
type model called protocol buffer to increase inference speed. It’s
done by freezing the graph, which is a way to identify and save the
required information, such as the graph and weights. The inference
time decreased from 1.5 ms to 0.9 ms.

4.4 SIMULATION

In this section we are providing results from the simulations.

4.4.1  Building a Simulator with Cython and Range_libc

We have implemented the LiDAR and the kinetic simulations us-
ing an existing library called range_libc and porting a frequently
used kinetic simulator developed by C. Walsh and S. Karaman [28].
Range_libc is a library with a few different implementations but mainly
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used for running ray-tracing algorithms. LiDAR and Kinetic simula-
tion code are written in C++, ported with Cython, and put together
with Python.

4.4.2 UCT with Racecar Simulator

The extension of the simulation tool is primarily to facilitate an MCTS
algorithm. The most computationally expensive operations of the sim-
ulation are inference with the policy network and applying LiDAR
simulation, inferring takes approximately 1ms, and lidar scan a third
of that. Consequently, the expensive operation of the MCTS algorithm
becomes the rollout. To accelerate the rollout stage, we first simulate
only the kinetics and pass all the states as a large chunk to the GPU.
It’s faster by a large margin, as can be seen in fig. 18. RMGPU and
RM is the proposed simulation environment with and without GPU.
UPENN is an existing simulation environment built at the University
of Pennsylvania3, which is an improvement of the initial racecar sim-
ulation mentioned above. Figure 18 primarily shows in increase time
performance in simulated LiDAR scans run, where running simula-
tions in parallel on the GPU vastly outperform the other options.

Method Performance

Function

B scanmanyi)/rollout_len

E scan()

030

025

Time (ms)

020

015

RM
Method

Figure 18: Time performance of ray-tracing between simulations.

4.4.3 Monte-Carlo Tree Search

The MCTS is implemented as described in Section 3.2.4. The pro-
posed racecar simulator together with range_libc for simulating lidar
scan with ray marching was used as the simulator to validate each ac-
tion. Each mcts phase is demonstrated in code below, see Algorithm
1. This is done for every action the vehicle is taking. The following
tests were performed with a Intel iy Skylake CPU with a GTX 1070

3 https://github.com/mlab-upenn/racecar_simulator
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graphics card.

Algorithm 1 MCTS for Continuous Action Spaces

1: Create root node
2: while time < budget do

3: procedure ITERATION(nOde, expanded=False)
4 action <— argmaxqvq + Cy/ % > Selection
5: if \/> ny < ||A]| then
6: Iteration(action, expanded=False) > Widening
7 end if
8: if not expanded then > Expansion
9: newAction < generateAction() > Policy
10: add newAction to tree
11 if not terminal then
12: TV < rollout > Simulation
13: end if
14: end if
15: Update tree > Backpropogation
16: end procedure

17: end while
18: Find best child

Action Generators

The MCTS used three action generators for the expansion phase. The
neural network, FTG and a randomly sampled action. A selected
node that has expanded prior will generate the same state if passed
to the action generator. So instead, a random sample in a specified
bound given by the first generated action. The span for the Neural
network is 2.3 degrees. The span is based on the mean error derived
from the neural network training. The same span is used for the other
action generators as well. In Figure 19, an MCTS searched for 10 sec-
onds, placed roughly in the same place at a left turn on our test track
starting at o velocities. The blue trails are roll-out states x,y coordi-
nates, and the orange trail is the path of the tree structure. The ran-
dom action generator (a) does not seem to converge to actions taking
a left turn, while both the neural network(b) and FTG(b) favors ac-
tions that are to the left. Both FTG, and the Neural network generates
more samples to the left, while the random action generator does not.
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MCTS lteration on Left Turn

® Rollout states
40 Tree states.

-010 005, 000 005 010 015 020 025 030

(a) Random

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(b) Neural Network (c) FTG

Figure 19: Tree and rollout state coordinates generated by MCTS with a com-
putational budget of 10 seconds.

Reward functions

Two different reward functions were tested with the MCTS. The re-
ward functions role is to estimate the value of a node after a rollout
is performed.

SV, 3 > o @

TER TER

The more straightforward reward function seen in Eq 3 is a total veloc-
ity accumulator until crash or end of rollout iterations V; is the state’s
current velocity. The other uses predefined waypoints and takes the
speed over the distance to the closest waypoint, seen in Eq 4, [|D.|| is
the distance to the waypoint.

Computational budget

Computational budget for the MCTS has some clear trade-offs, choos-
ing more time to estimate a good path will result in slower actions,
and the estimation will inherently become worse because the state
of the car keeps changing. In the simulation, it is possible to change
the frequency of the car state changes. Thus, lowering the frequency
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results in more computation for the algorithm without the trade-off
for slower actions.

Visualizing MCTS iterations

-

® Rollout states

Tree states

“10 -8 B -4
Xcoordinate

(a) Budget at 0.01 seconds

(b) Budget at 0.05 seconds (c) Budget at 0.1 secondss

Figure 20: Tree and rollout state coordinates generated by MCTS for a single
lap on our test track.

In Figure 20 one lap on the test track is done in simulation. For (a),
the budget is set to 0.01, which is the same as the update rate of the
simulation, and rollout max iteration is set to 50. The search of the
MCTS with the defined budgets performed 7, 43, and 109 iterations.
For (b), (c) the budget is increases 5 and 10 fold, and the update rate
is lowered to equal the budget. For (c) rollout, max iterations were
increased to 100.

A time trial in the simulation was done to compare reactive methods
with their corresponding MCTS. The test was performed on four test
tracks, two bigger ones, and two smaller ones, respectively. See Table
2 and 3. The number in the cell represents the average lap time in sec-
onds, calculated over ten completed laps. The MCTS used o.01, 0.05,
0.1, and 0.2 seconds as budget. Numbers marked with a * indicates
that the agent crashed on its first lap. The maps are available in the
Appendix Test Maps.
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Table 2: Average lap time (seconds) with budgets(B). Instant action (IA) are
none MCTS-agents.

| U-shaped H Big Fs H
Agent | IA |Bo.01[Bo.05|Bo.1 |Bo.2 || IA [Bo.01|Bo.05|Bo.1 |Bo.2
FG 20.7| - - - - ||9.0| - - - -
RRT*  [18.39| - - - - 1857 - - - -
NN 7.50%| - - - - ||5.8% - - - -
MCTS¢g - |20.1|19.6|19.3|19.1|| - |8.90]|8.60|8.32|8.30
MCTSnN | - |7.20%|8.40%(8.60%(8.80%|| - |4.92%|6.05%|6.12%6.16*
MCTSgND| - [3-31%|3.52%(4.04%(4.06%|| - |1.32%|1.35%|1.41%|1.44%

Table 3: Average lap time (seconds) with budgets(B). Instant action (IA) are
none MCTS-agents.

H No Box H D-shaped H
Agent | TA Bo.01|Bo.05|Bo.1|Bo.2 || TA [Bo.01[Bo.05|Bo.1 [Bo.2
FG 9.05| - - - - ||6.91| - - - -
RRT* |7.78| - - - - ||5.82| - - - -
NN 2.51% - - - - ||5.74% - - - -
MCTS¢g | - |7.21*|9.01| 9.0 | 9.1 - |2.38%|2.41%| 6.81(6.85
MCTSnN | - |2.51%| 2.5% | 2.5% [2.51%] - | 6.2 |5.66%| 6.1 | 6.1
MCTSgND| - | 1.2% [2.25%|2.23% 2.5% || - | 2.4 |2.41%|2.42%|2.4%
196 FG 86 FG
| .
8259 FG ~— NN
X  FG Crash X FG Crash
oo o X NN Crash

0000 0025 0050 0075 0160 0125  01s0 0175 0200 0000 0025 0050 0075 0100 0125 0150 0175 0200

Figure 21: The performance change in seconds with budget of those MCTS
agents that finished laps. Graphical description of the tables above.
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4.5 TESTING MCTS ON FI-TENTH CAR

Testing MCTS agent on the physical car only worked for low speeds,
e.g., 2.0m/s. This is due to the computational constraints of the TX2.
The TX2 is running, all the ROS Nodes, a particle filter, and then the
MCTS agent on top of this. Running with a budget of 0.01 seconds
yielded a iteration count 2-3, with FTG as an action generator. By
using neural network policy as a generator with the same budget
yielded 1-2 iterations. The car was able to drive several laps without
crashing.
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In this chapter we discuss our findings, problems our current solu-
tions can not solve and applicability in other fields.

5.1 ANALYSIS OF THE RESULTS

In this section we analyze our results and make conclusions as to why
we got the result.

5.1.1  Simulation Extension

During this work we have implemented a simulation environment
based on racecar_simulator® by MIT. We also have made our driving
agents publicly available with the simulation environment, it is pub-
lished on a Github repository?.

As shown in the bar plot, Fig 18, running the ray-tracing methods
on the GPU gave a faster result. But we want to point out that this
only works for static environments. Since the map and it’s mapped
objects do not move, the distance transformation does not need to
re-calculated for each step. Maximum rollout iterations were set to
100 for the majority of the tests. Instead of evaluating one state and
then scanning the next, we scan for the entire max iterations and later
evaluate. Evaluating includes checking for crashes and calculating a
reward.

5.1.2  Neural Network Policy

We ended up using a MLP because LiDAR is a 1-D array, another rea-
son was that a smaller and simpler model has faster inference time.
The structure of the model was iterated with a simple grid-search.
The neural network could probably perform better with hyperparam-
eter tuning.

A dataset consisting of lidar points and actions of the control unit was
created. The dataset is in two equal-sized parts, one from the testbed
and one from the simulation. The data from the testbed were col-
lected from different tracks that were built on Halmstad University.

1 https://github.com/mit-racecar/racecar_simulator
2 https://github.com/felrock/PyRacecarSimulator
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The simulation part was created in the fitenth simulation environ-
ment. A variety of maps was used, from a simple circular track to a
more complex shape such as a u-shape. With this dataset, a multilayer
perceptron model with four hidden layers was trained and achieved
a mean absolute error of 0.03 on the test set. A generalization test
was also conducted to test the performance even further. The vehicle
was placed in a map that had not been included during training, the
model achieved an MAE of 0.116, which is 6 — 7°. It concluded that
the neural network could distinguish whether it is a right or a left
turn, which is its purpose.

5.1.3 MCTS Comparison

It was shown in Figure 20 that with a higher budget for the MCTS the
agent was less prone to over-steering and had smoother actions than
agents with a lower budget, however, limited to our implementation
and testing capabilities. To conclude that MCTS is better would need
more investigation. The tree structured of the MCTS follow the actual
path more accurately with budget set to 0.05 and o.1.

For the time trial test, the difference in lap times was smaller between
agents on the maps Map D and No box. This is because those maps
are smaller U-shape and Big F5. The increase in budget for MCTS on
map Big F5 and U-Shape showed a decrease in laps average, for FTG.
Using randomly selected actions did not finish a lap on any of the
tracks, and the time before the crash did not increase with a budget
increase. The Neural Network however, performed a good lap time
on Map D, with the exception of crashing with budget 0.05. Also
selecting an action for the Neural network is slower than for FTG,
which results in 2x lower iterations per budget. The RRT* implemen-
tation performed the best on the majority of the tracks, where it only
performed worse than MCTS¢G on Big F5. This shows our implemen-
tation of MCTS in it’s current state falls short.

Finally a test on the F1-Tenth testbed was performed and it showed
that the car could drive at low speeds, with low iteration count on
MCTS. At these low iteration counts, MCTS becomes almost obsolete,
and driving with purely follow the gap or the policy would be a better
choice for driving at higher speeds. Since the first child is sampled
directly from the chosen policy, and if that child is then selected, the
driving mechanism is only of the policy.
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5.2 STATIC AND DYNAMIC OBSTACLES

For the task of planning a path with an environment that has both
static and dynamic obstacles force a driving agent to have a mech-
anism to classify them. It is crucial to know what objects move to
be able to plan. If that mechanism is available to the agent, there is
still the problem of translating the dynamic object into the simulation
and approximating the path of the dynamic object. The task of sim-
ulating LiDAR becomes more costly, because of approximating the
path of the translated dynamic object, assuming it’s an Fi-tenth car.
The method of ray-marching performs worse when the state of the
map have incremental steps.

5.3 REAL-TIME ISSUES

The major problem the planner is facing is the computational con-
straints of an on-car processing unit, in our case, the Nvidia Jetson
tx2. Which adds to the issue of acting in time, the faster the vehicle
drives the quicker response time the driver needs to have. With a com-
putational budget of o.1s, it’s able to perform 30 iterations with NN,
which is too low for the MCTS to converge on an improved action.
The policy is trained to reduce the search space and not drive the ve-
hicle. In section 4.4.3, we demonstrated that by increasing processing
performance, the planner converges to a better chosen path on the
test track. Another approach would be to improve the policy, which
would lead to the decreased necessity of alternate trajectories.

5.4 LIMITATION OF SIMULATION

MCTS relies heavily on that the simulated actions are as close to as
real scenario. In the case of testing the MCTS, the simulation that
is running inside MCTS is the same as the actual world. So actions
performed in both simulations work the same, however, evaluating
against reality there exists an error between the simulated action and
the real performed action. Since MCTS was quite slow we where un-
able to test this. The depth of the tree was only 1-2, which is only
~0.02 seconds simulated.

5.5 APPROXIMATING AN OPTIMAL PATH

The initial idea for the MCTS approach was to use it only as a self-
driving agent. But by allowing it to run during a more extended pe-
riod of time, lap times will become better as the search depth grows.
Once a lap is done, the expansion part would only allow expansion
by widening. Then over time, an optimal path will be approximated
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with the physics acting on the car, however, limited to the simulations
accuracy.
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CONCLUSION

The topic of applying a Monte-Carlo Tree Search in continuous action
spaces for autonomous racing has been explored in this study. It was
implemented in the Fi-tenth format, which is a vehicle one-tenth of
the size of a real vehicle. With the on-board processing unit, it was
shown that MCTS is not suitable for a real-time problem such as
racing. But as the computational performance increased, the action
it predicted got better. It’s visible in Figure 20 that with an increase
in budget the agent is less prone to over-steering. This also shows in
the time trial test, where on the larger maps, a higher computational
budget gave a lower average lap time, for Tabel 2 and Table 3. For the
main reason for this project, of driving a car in real time, MCTS is
not suitable with the current set up. The computing device on the car,
combined with optimizing the software, should be considered to use
this method. A better option would be using a method like RRT* for
driving in the environments that we have tested.

6.1 FUTURE WORK

To proceed with this work a next step could be to implement a sim-
ulation environment that can handle multi agent problems. Dealing
with the problems of doing ray-tracing with incremental updates of
obstacles. Or applying these methods on an existing simulator such
as CARLA, or even in games such as GTA 5.

An interesting topic to follow up is a way to translate objects into
the simulation. By using senors such camera and LiDAR estimate
the position on the map. Translating meaning, localizing and keeping
track of dynamic objects in the race. Another possible enhancement
is building a light weight simulation specific for multi agent racing.
To be able to test different agents and how the behave in a dynamic
setting.

The MCTS algorithm we are using is popular among reinforcement
learning tasks. Such as agents that have outperformed humans is
AlphaZero[24], AlphaStar[27] and more recently MuZero [23]. Where
self-play is the key feature used that would be interesting to see done
on a problem dealing with autonomous vehicles.

Furthermore, as we did not do any extensive testing of the hyper
parameters of the MCTS or of the roll-out policy. They were set with

35
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values inspired from previous works. For the code to work better for
real-time handling it will need to be optimized even further.
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(a) Map D (b) Nobox

() Map U (d) Fs5 Big

[June 14, 2020 at 9:45 — version 1.0 ]



[June 14, 2020 at 9:45 — version 1.0 ]



BIBLIOGRAPHY

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel.
Constrained policy optimization. CoRR, abs/1705.10528, 2017.
URL http://arxiv.org/abs/1705.10528.

[2] J. Auckley, A. Jain, K. Luong, R. Mangharam, M. Okelly,
and H. Zheng. Tech Report: TunerCar: A Superoptimization
Toolchain for Autonomous Racing. Technical Report UPenn-ESE-
09-15, University of Pennsylvania, September 2019.

[3] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeur-
net: Learning to drive by imitating the best and synthesizing the
worst, 2018.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bern-
hard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel,
Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake
Zhao, and Karol Zieba. End to end learning for self-driving cars,
2016.

[5] Florian Curinga. Autonomous racing using model predictive
control, 2017.

[6] Pierre Del Moral. Non linear filtering: Interacting particle solu-
tion. Markov Processes and Related Fields, 2:555-580, 03 1996.

[71 T. Do, M. Duong, Q. Dang, and M. Le. Real-time self-driving
car navigation using deep neural network. In 2018 4th Interna-
tional Conference on Green Technology and Sustainable Development
(GTSD), pages 7-12, Nov 2018. doi: 10.1109/GTSD.2018.8595590.

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving sim-
ulator, 2017.

[9] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian
Thrun. Monte carlo localization: Efficient position estimation for
mobile robots. AAAI/IAAI 1999(343-349):2—2, 1999.

[10] Arthur Gelb. Applied optimal estimation. MIT press, 1974.

[11] Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-
predictive policy learning with uncertainty regularization for
driving in dense traffic. CoRR, abs/1901.02705, 2019. URL
http://arxiv.org/abs/1901.02705.

41

[June 14, 2020 at 9:45 — version 1.0 ]


http://arxiv.org/abs/1705.10528
http://arxiv.org/abs/1901.02705

42

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

Gokhan Karabulut. Mini autonomous car architecture for urban
driving scenarios. 9 2019.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms
for optimal motion planning. CoRR, abs/1105.1186, 2011. URL
http://arxiv.org/abs/1105.1186.

S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexi-
ble and scalable slam system with full 3d motion estimation. In
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE, November 2011.

Steven M. Lavalle. Rapidly-exploring random trees: A new tool
for path planning. Technical report, 1998.

Richard Liaw, Sanjay Krishnan, Animesh Garg, Daniel
Crankshaw, Joseph E. Gonzalez, and Ken Goldberg. Compos-
ing meta-policies for autonomous driving using hierarchical
deep reinforcement learning. CoRR, abs/1711.01503, 2017. URL
http://arxiv.org/abs/1711.01503.

Thomas M. Moerland, Joost Broekens, Aske Plaat, and
Catholijn M. Jonker. Aoc: Alpha zero in continuous action space,
2018.

Anders Nordmark and Oliver Sundell. Tactical decision-making
for highway driving. 2018.

Defense Advanced Research Project Agency Information Pro-
cessing Technology Office. Autonomous off-road vehicle control
using end-to-end learning, 2004. URL http://net-scale.com/
doc/net-scale-dave-report.pdf.

Matthew O’Kelly, Varundev Sukhil, Houssam Abbas, Jack
Harkins, Chris Kao, Yash Vardhan Pant, Rahul Mangharam, Dip-
shil Agarwal, Madhur Behl, Paolo Burgio, and Marko Bertogna.
F1/10: an open-source autonomous cyber-physical platform.
CoRR, abs/1901.08567, 2019. URL http://arxiv.org/abs/1901.
08567.

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to
real reinforcement learning for autonomous driving, 2017.

Dean Pomerleau. Alvinn: An autonomous land vehicle in a neu-
ral network. In D.S. Touretzky, editor, Proceedings of Advances in
Neural Information Processing Systems 1. Morgan Kaufmann, Jan-
uary 1989.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen
Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward
Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap,

[ June 14, 2020 at 9:45 — version 1.0 ]


http://arxiv.org/abs/1105.1186
http://arxiv.org/abs/1711.01503
http://net-scale.com/doc/net-scale-dave-report.pdf
http://net-scale.com/doc/net-scale-dave-report.pdf
http://arxiv.org/abs/1901.08567
http://arxiv.org/abs/1901.08567

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

BIBLIOGRAPHY

and David Silver. Mastering atari, go, chess and shogi by plan-
ning with a learned model, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-
rent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and
shogi by self-play with a general reinforcement learning algo-
rithm, 2017.

Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David
Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale,
Morgan Halpenny, Gabriel Hoffmann, Kenny Lau, Celia Oak-
ley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Stro-
hband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koelen,
Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen,
Philippe Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger,
Adrian Kaehler, Ara Nefian, and Pamela Mahoney. Stanley: The
robot that won the darpa grand challenge: Research articles. J.
Robot. Syst., 23(9):661-692, September 2006. ISSN 0741-2223. doi:
10.1002/rob.v23:9. URL http://dx.doi.org/10.1002/rob.v23:
9.

C. Urmson and W. ". Whittaker. Self-driving cars and the ur-
ban challenge. IEEE Intelligent Systems, 23(2):66-68, March 2008.
ISSN 1941-1294. doi: 10.1109/MIS.2008.34.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél
Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi,
Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmas-
ter level in starcraft ii using multi-agent reinforcement learning.
Nature, pages 1-5, 2019.

Corey H. Walsh and Sertac Karaman. CDDT: fast approximate
2d ray casting for accelerated localization. CoRR, abs/1705.01167,
2017. URL http://arxiv.org/abs/1705.01167.

Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos
Dimitrakakis, Rémi Coulom, and Andrew Sumner. Torcs, the
open racing car simulator. Software available at http://torcs. source-
forge. net, 4(6), 2000.

Timothy Yee, Viliam Lisy, and Michael Bowling. Monte carlo tree
search in continuous action spaces with execution uncertainty.
In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI'16, page 690-696. AAAI Press, 2016.

ISBN 9781577357704.

William “red Whittaker, Dave Ferguson, and Michael Darms.
Boss and the urban challenge.

[June 14, 2020 at 9:45 — version 1.0 ]

43


http://dx.doi.org/10.1002/rob.v23:9
http://dx.doi.org/10.1002/rob.v23:9
http://arxiv.org/abs/1705.01167

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Problem Definition
	1.2 Background
	1.3 Restrictions
	1.3.1 Contest
	1.3.2 Environment

	1.4 Purpose
	1.5 Limitations
	1.6 Contribution

	2 Literature Survey
	2.1 Autonomous driving
	2.2 Simulation
	2.3 Continuous Actions Spaces for MCTS
	2.4 Policy learning
	2.5 Localization
	2.6 Previous F1/10 projects

	3 Methodology
	3.1 Approach
	3.1.1 Expanding on the Problem Definition
	3.1.2 Deployment

	3.2 Algorithms and Concepts
	3.2.1 Simultaneous Localization And Mapping(SLAM)
	3.2.2 Localization
	3.2.3 Motion Planning
	3.2.4 Monte Carlo Tree Search

	3.3 Frameworks
	3.3.1 Testbed
	3.3.2 Robot Operating System
	3.3.3 Simulation


	4 Results
	4.1 Algorithms
	4.1.1 Follow The Gap
	4.1.2 Rapidly Exploring Random Tree (RRT)

	4.2 Dataset
	4.3 Neural Network
	4.3.1 Generalization

	4.4 Simulation
	4.4.1 Building a Simulator with Cython and Range_libc
	4.4.2 UCT with Racecar Simulator
	4.4.3 Monte-Carlo Tree Search

	4.5 Testing MCTS on F1-Tenth car

	5 Discussion
	5.1 Analysis of the results
	5.1.1 Simulation Extension
	5.1.2 Neural Network Policy
	5.1.3 MCTS Comparison

	5.2 Static and Dynamic Obstacles
	5.3 Real-time Issues
	5.4 Limitation of Simulation
	5.5 Approximating an Optimal Path

	6 Conclusion
	6.1 Future Work

	Appendix
	A Appendix Test Maps
	Bibliography


