Field Robotics, April, 2023 - 3:637-651 - 637

Special Issue: Opportunities and Challenges with Autonomous Racing

Regular Article

TC-Driver: A Trajectory Conditioned
Reinforcement Learning Approach to
Zero-Shot Autonomous Racing

Edoardo Ghignone*®, Nicolas Baumann*® and Michele Magno®
ETH Zurich, Switzerland

Abstract: Autonomous racing is becoming popular for academic and industry researchers as a test
for general autonomous driving by pushing perception, planning, and control algorithms to their
limits. While traditional control methods such as model predictive control are capable of generating
an optimal control sequence at the edge of the vehicles’ physical controllability, these methods are
sensitive to the accuracy of the modeling parameters, such as tire modeling coefficients. As model
mismatch is inevitable in reality, the heuristic nature of Reinforcement Learning (RL) offers a viable
approach to modeling robustness. This paper presents TC-Driver, an RL approach for robust control
in autonomous racing. In particular, the TC-Driver agent is conditioned by a trajectory generated
by any arbitrary traditional high-level trajectory planner. The proposed TC-Driver architecture
addresses the tire parameter modeling inaccuracies by exploiting the learning capabilities of RL while
utilizing the reliability of traditional planning methods in a hybrid fashion. We train the agent under
varying tire conditions, allowing it to generalize to different model parameters, aiming to increase
the racing capabilities of the system in practice. Experimental results demonstrate that the proposed
hybrid RL architecture of the TC-Driver improves the generalization robustness of autonomous
racing agents when compared to a previous state-of-the-art end-to-end-based architecture. Namely,
the proposed controller yields a 29-fold improvement in crash ratio when facing model mismatch
and can zero-shot transfer its behavior on unseen tracks which present completely new features,
while the end-to-end baseline fails. When deployed on a physical system, the proposed architecture
demonstrates zero-shot Sim2Real capabilities that outperform end-to-end agents 10-fold in terms
of crash ratio while exhibiting similar driving characteristics in reality as in simulation.

Keywords: autonomous racing, reinforcement learning, control, wheeled robots, embedded control

1. Introduction

Autonomous racing on resource-constrained hardware pushes the boundaries of algorithmic design
and implementation in perception, planning, and control (Jung et al., 2018; Kabzan et al., 2020;

*Associated with Center for Project Based Learning, D-ITET, ETH Zurich.
Received: 1 August 2022; revised: 15 January 2023; accepted: 23 February 2023; published: 20 April 2023.
Correspondence: Nicolas Baumann, ETH Zurich, Switzerland, Email: nicolas.baumann@pbl.ee.ethz.ch

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2023 Ghignone, Baumann and Magno
DOI: https://doi.org/10.55417 /fr.2023020

http://fieldrobotics.net

https://orcid.org/0000-0003-3843-2661
https://orcid.org/0000-0001-6591-1321
https://orcid.org/0000-0003-0368-8923
mailto:nicolas.baumann@pbl.ee.ethz.ch
https://doi.org/10.55417/fr.2023020
http://fieldrobotics.net

638 - Ghignone et al.

Lyu et al., 2022). Thus, it is a valuable asset for researchers to push the limits of autonomous
driving (Law et al., 2018; Rosolia and Borrelli, 2020), as it can lead to many benefits, such as
enhancing road safety, reducing carbon emissions, transporting the mobility impaired, and reducing
driving-related stress (Crayton and Meier, 2017; Yurtsever et al., 2020). Due to the ambitious
research challenges, in recent years many autonomous racing competitions have emerged and received
considerable attention in the fields of robotics and Artificial Intelligence (AI). For instance, the
Formula Student Driverless (Kabzan et al., 2020) and the AWS DeepRacer League (Balaji et al.,
2020) are popular and followed by tens of teams. Among other competitions, the FITENTH racing
platform (O’Kelly et al., 2020b) is gaining popularity by organizing semi-regular autonomous racing
competitions involving a physical race car on a scale of 1:10. As the standardized platform offers
little room for improvement on the hardware side, the main challenges are raised on the algorithmic
side (O’Kelly et al., 2020a), where the resource-constrained processor with limited memory and
computational resources makes the algorithmic design even more challenging. Namely, the embedded
control layer becomes the key focus of development, as the system in itself is highly nonlinear and the
behavior of the car must be taken into consideration at the edge of stability (Betz et al., 2022; Liniger
et al., 2014). Current State-of-the-Art (SotA) racing controllers utilize optimal control methods such
as Model Predictive Control (MPC) (Kabzan et al., 2020; Law et al., 2018; Liniger et al., 2014;
Rosolia and Borrelli, 2020). While MPC can guarantee the optimality of the planned trajectory and
tracking within its receding horizon, it heavily relies on the accuracy of the modeling parameters, and
as shown in Wang et al. (2020), heuristic strategies can outperform MPC even if the latter contains
more information about the controlled system. Particularly in the context of autonomous car racing,
the model inaccuracies of the lateral tire forces are highly critical (Pacejka, 2012; Raji et al., 2022).
These forces are notoriously difficult to model and the tires’ behavior is highly nonlinear (Brown
and Gerdes, 2020; Liniger, 2021). In real racing scenarios, a tire modeling mismatch is very likely to
occur, as high wear, tear, and weight changes modify the initial parameters (Liniger, 2021). While
there exist several previous works that have attempted to address this issue using learning-based
methods (Carrau et al., 2016; Frohlich et al., 2021; Jain et al., 2021) for MPC, we assess and highlight
the feasibility and performance of a reinforcement learning (RL) approach that allows robust control
behavior without the need for complex model-contextual optimization in MPC.

RL (Sutton and Barto, 2018) methods offer a Machine Learning (ML)-based solution that was
shown to be able to handle complex robotic and control tasks, such as plasma control (Degrave
et al., 2022), hand manipulation (Andrychowicz et al., 2020), quadrupedal locomotion (Miki et al.,
2022), and autonomous racing as in Fuchs et al. (2021) and Wurman et al. (2022), where the authors
apply RL to outperform professional human drivers in the setting of a highly realistic videogame.
In Brunnbauer et al. (2022), instead the authors show that model-based RL architectures prove to
be better at generalizing to new driving tasks and look more promising when trying to overcome
the Sim2Real gap. In Chisari et al. (2021) then, the authors apply a regularization strategy to
the ML agent and show that this substantially improves the Sim2Real capabilities. The mentioned
architectures are end-to-end learned, meaning that they learn the optimal control policy directly
from sensory input. Recent previous works (de Bruin et al., 2018; Li et al., 2018) highlight that to be
able to derive control policies from raw sensory data, relevant semantics (e.g., track features) must
be automatically learned by the system, and propose learning-based enhancements to improve the
learning process, e.g., as in de Bruin et al. (2018) where the authors show that using an auto-encoder
structure can improve the reward obtained on unseen tracks by three times. On the other hand,
such features can be extracted with traditional control procedures to improve the robustness against
model mismatch and track generalization.

This paper proposes a rrajectory-conditioned RL controller (TC-Driver) for resource-constrained
hardware, inspired by the two-layer planner-controller separation that is often present in robotic
systems (Betz et al., 2022; Kabzan et al., 2020). Within our framework, the planning layer is
responsible for generating a safe and performant trajectory, while the control layer is dedicated
to generating control inputs to make the system follow the given trajectory. According to our
layout then, TC-Driver considers the planner to be given and uses the RL agent for trajectory

Field Robotics, April, 2023 - 3:637-651

TC-Driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing - 639

tracking and velocity control, exploiting the learning capabilities of RL to heuristically handle model
mismatch and track generalization, while utilizing the safety and reliability of traditional planning
methods (Werling et al., 2010) in a hybrid fashion. The main contribution of this paper is the
design and evaluation of TC-Driver, a robust trajectory-conditioned RL approach for autonomous
driving, specifically designed for resource-constrained hardware such as an Intel Core i3-1115G4
Central Processing Unit (CPU) or an NVIDIA Jetson NX. TC-Driver is able to effectively zero-shot
transfer its driving behavior to an unseen track, as well as to robustly tackle varying tire conditions
when compared to the SotA end-to-end RL architecture. Experimental results in simulation and
on a physical FITENTH race car (O’Kelly et al., 2020a) suggest that our hybrid architecture
can zero-shot transfer on the physical system significantly better than the previous end-to-end
architecture by demonstrating a 10-fold lower crash ratio, which is computed as the proportion of
laps that were not completed due to collision with boundaries to the total number of laps. Therefore,
the TC-Driver architecture offers the following multiple advantages.

Robustness to Modeling Mismatch: Many previous works have highlighted the importance of
model randomization when training RL agents in simulation for real-world application (Chisari
et al., 2021; Loquercio et al., 2020). However, previous SotA presents little (Chisari et al., 2021;
Fuchs et al., 2021) to no (Brunnbauer et al., 2022) focus towards explicitly training autonomous
racing algorithms in randomized settings and testing them in unseen circumstances. We
specifically focus on this crucial theme for in-field driving, namely by choosing the notoriously
important tire parameters (e.g., tire friction and stiffness) (Frohlich et al., 2021; Jain et al., 2021;
Liniger, 2021; Liniger et al., 2014). TC-Driver introduces the model randomization onto the tires’
friction to the RL agent during training, differently from previous works (Brunnbauer et al.,
2022; Chisari et al., 2021; Fuchs et al., 2021), as in Table 1, by injecting Gaussian noise varying
at each episode throughout the training procedure. Experimental results specifically test the
controller outside of the friction training domain, showing that the TC-Driver architecture brings
a 29-fold crash ratio improvement when compared to a SotA end-to-end implementation, and a
32-fold crash ratio improvement when compared to a non-learning-based MPC, as in Table 2.

Track Generalization Capabilities: Recent previous work on RL autonomous racing did not
focus specifically on the agents’ ability to generalize to unforeseen tracks (Chisari et al., 2021;
Fuchs et al., 2021; Song et al., 2021); rather they were interested in optimizing the control capa-
bilities on the training track. On the contrary, this paper shows that the proposed architecture

Table 1. Comparison of related works in the field of RL autonomous racing. The x denotes partial investigation.
This work studies the effect of Sim2Real, track generalization, and model generalization, while not relying on a
fully black-box end-to-end method.

Sim2Real End-to-End Track Generalization Model Generalization
Chisari et al. (2021) v v X *
Brunnbauer et al. (2022) v v * X
Fuchs et al. (2021) X v X X
Ours v X v v

Table 2. Lap time results of 200 runs; comparison with imperfect knowledge of dynamics on the F training
track. Average lap time t, in seconds (lower is better, only completed laps are counted); standard deviation of
the lap times t, (lower is better); percentage of crashes during the runs (lower is better). Average advancement
adv, on the track per run, as a percentage of the complete laps (higher is better, all laps are counted); standard
deviation of the advancement adv, on the track per run.

Lap time, t, [s] Lap time,t, [s] Crashes Advancement, adv, [%] Advancement, adv, [%]

MPC 10.094 0.501 80.50% 32.67% 28.26%
End-to-end 11.148 0.302 73.50% 52.51% 28.69%
TC-Driver 10.798 0.143 2.50% 99.37% 4.90%

Field Robotics, April, 2023 - 3:637-651

640 - Ghignone et al.

Table 3. Averaged lap time results of 200 runs on the unseen tracks Autodrome, Catalunya, and Oschersleben
with zero model mismatch. Average lap time in seconds (lower is better); standard deviation of the lap times (lower
is better); percentage of crashes during the runs (lower is better); average advancement adv, on the track per run,
as a percentage of the complete lap (higher is better, all laps are counted); standard deviation of the advancement
adv, on the track per run (lower is better). The main comparison concerns the RL agents, as the MPC is in a
zero-model-mismatch setting where its optimality holds, yet its performance is shown in gray for reference.

Track Driver Lap time, t, [s] Lap time, t, [s] Crashes Advancement, adv, Advancement, adv,
MPC 46.461 0.029 0.00% 100.00% 0.00%
Autodrome End-to-end 52.557 0.234 96.00% 35.09% 27.06%
TC-Driver 59.020 0.307 8.00% 95.32% 17.88%
MPC 41.475 0.036 0.00% 100.00% 0.00%
Catalunya End-to-end 46.878 0.207 95.50% 44.16% 30.33%
TC-Driver 52.978 0.321 59.50% 65.27% 37.03%
MPC 25.915 0.022 0.00% 100.00% 0.00%
Oschersleben End-to-end n.a. n.a. 100.00% 19.27% 19.93%
TC-Driver 34.603 0.415 94.00% 46.95% 31.23%

Table 4. Average computation time of the utilized control methods and their
respective standard deviation.

Computation Time, t, [ms] Computation Time, t, [ms]
MPC 11.2 0.9
End-to-end 0.26 0.05
TC-Driver 0.27 0.04

can better generalize to unseen tracks as the observation given to the RLL model has no general
reference to the track itself but only a partial trajectory. TC-Driver yields superior generalization
capabilities on unforeseen tracks when compared to the end-to-end setting based on previous
SotA implementations (Chisari et al., 2021; Fuchs et al., 2021; Song et al., 2021). As shown in
Table 3, TC-Driver outperforms the end-to-end model by achieving an average crash ratio lower
by a factor of ~ 2.5 in simulation and by a factor of 10 in reality. We can demonstrate similar track
generalization characteristics as in Brunnbauer et al. (2022), however, within a model-free setting.
Computational Benefit: The best performing SotA controllers in autonomous racing are still
MPC based. However, they either require a powerful compute platform comparable to a desktop
computer (Kabzan et al.; 2020) or external compute (Liniger et al., 2014) that is not always
available under space and power consumption constraints, especially in racing competitions.
To further motivate the adoption of RL agents for embedded autonomous driving, we evaluate
the computational performance of our algorithm at runtime, showing that the RL inference has
an average duration of 0.25 ms compared to the average MPC solving time of 11.5 ms, as in
Table 4, allowing for deployment on either less performant platforms or at higher frequencies.
Zero-Shot Sim2Real Capacity: A recent survey (Betz et al., 2022) has highlighted that the
majority of previous autonomous racing algorithms have not been proven to be working on real
platforms, and even less on a resource-constrained system. In fact, only 23 algorithms out of 49 are
deployed on real platforms; only 2 of the 23 then are implemented on small-form-factor, resource-
constrained hardware. Focusing on RL algorithms then, multiple previous works only show their
car working in simulation (Fuchs et al., 2021). On the other hand, only Chisari et al. (2021)
and Brunnbauer et al. (2022) have demonstrated Sim2Real capabilities. This paper presents and
evaluates T'C-Driver’s generalization performance on the physical FITENTH system (O’Kelly
et al., 2020a), showing that the proposed architecture possesses a great Sim2Real advantage
compared to previous end-to-end RL architectures, by deploying RL models purely trained in
simulation into the physical system on completely unforeseen tracks. TC-Driver outperforms the
end-to-end setting 10-fold in terms of crash ratio and is capable of demonstrating similar lap
time consistency in reality as observed in simulation, as shown in Table 5. This is comparable

Field Robotics, April, 2023 - 3:637-651

TC-Driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing - 641

Table 5. Sim2Real lap time results of 10 runs in a clockwise direction
and 10 runs in a counterclockwise direction, of end-to-end and TC-
Driver RL architectures on the physical track. Average lap time t, in
seconds (lower is better); standard deviation of the lap times t, (lower
is better); percentage of crashes during the runs (lower is better).

Lap time, ¢, [s] Lap time, t, [s] Crashes
End-to-end n.a. n.a. 100.0%
TC-Driver 20.281 0.373 10.0%

to the Sim2Real capabilities demonstrated in Brunnbauer et al. (2022), yet without the model
being trained on the layout resembling the physical testing track (namely, Brunnbauer et al.
(2022) tested on the training track but in the opposite direction), whereas this work emphasizes
on a quantitative analysis of the lap-completion ratio on completely unforeseen tracks.

To summarize, TC-Driver is a computationally efficient hybrid RL approach to autonomous
racing that proves to be capable of robust control in terms of model parameter mismatch and
track generalization, demonstrating lap completion under model mismatch settings where classical
non-learning-based MPCs fail to do so and outperforming SotA end-to-end RL controllers 10-fold
in terms of crash ratio under zero-shot Sim2Real conditions. It thus demonstrates the viability
and necessity of utilizing classical control strategies in the hybrid RL setting, as opposed to pure
end-to-end architectures. A summary of the features of TC-Driver compared to previous work is
available in Table 1.

2. Methodology

The RL terminology follows the convention of Sutton and Barto (2018). The main goal of the
proposed architecture is to train an agent operating a race car that is aware of a given trajectory
in realistic conditions, especially under the influence of noise applied to the tire friction coefficients.
As the environment will have different tire modeling parameters in every episode, the agent learns
to handle the tire parameter modeling mismatch during training, ultimately allowing for robust
tracking of a given trajectory. The method of presenting the RL agent with random environment
dynamics, also called domain randomization, is often used in previous works (Degrave et al., 2022;
Loquercio et al., 2020; Chisari et al., 2021) and often is deemed fundamental (e.g., Loquercio et al.,
2020) to learn robust behavior in the face of model uncertainties that arise in real-world settings.
The following subsection presents the proposed TC-Driver architecture starting from the simulation
environment in Section 2.1 used to build and evaluate the proposed solution, as well as the SotA end-
to-end architecture in Section 2.2. Lastly, we describe the procedure of tire parameter randomization
to ensure model mismatch robustness in Section 2.3.

2.1. Simulation Environment

For a fast and accurate evaluation of the proposed architecture, we adopted the FITENTH
simulation environment (O’Kelly et al., 2020b), which aims to offer an OpenAI-Gym-compatible
wrapper (Brockman et al., 2016). Within the environment, the vehicle’s dynamics are modeled with
the Single Track model (Althoff et al., 2017) to realistically simulate Ackermann-steered vehicles.
The model can be seen in Figure 1.

i, Cs, 5, and Cg, model the friction, the cornering stiffness on the front axle, and the cornering
stiffness on the rear axle, respectively, as in Polack et al. (2017) and Althoff et al. (2017). The
F1TENTH environment has been modified to be able to inject noise into the simulation parameters,
allowing the investigation of robustness in terms of tire modeling inaccuracies. The simulation
environment offers the following dynamic state of the car: sqyn = [Sz, Sy, U, Vs, Uy, J] = [global
x position, global y position, yaw angle with respect to the positive x axis, longitudinal velocity,

Field Robotics, April, 2023 - 3:637-651

642 - Ghignone et al.

$e =vcos(yp +)
3y = vsin(y +)
5 = fsteer(x'in ul)

V= facc(af47 Uz)

. m
)= [(ﬁiw(lfcs, £(gly — u2heg)d + (1-Cs, (gl + uzheg) — 15 Cs, f(glr + uzhey))B
— (BCs, (gl — uahe) + 05, (gly +uzhes)))
B=—t(Cs (gl — usheg)§ — (Cs,r(gls + uzheg) + Cs, £ (gly — uzheq))B
v(lr +1y) ‘
+ (Csn(gls + uzheg)lr — Cs, (gl — uaheg)i) 2) — 9

Figure 1. Bicycle model dynamics from Althoff et al. (2017).

lateral velocity, yaw rate]. Furthermore, the simulation environment provides sensory input in the
form of a LiDAR scan made of 1080 points over 270° coverage area around the car. To summarize,
the observation of the environment is 0bsgym = [scan, sz, Sy, U, Uz, Uy, w] The action space of the
gym environment solely consists of continuous actions a = [v, 0], where v is the desired longitudinal
velocity and ¢ is the steering angle of the agent. The reward function defined in Equation 1 is

inspired by Chisari et al. (2021) and Fuchs et al. (2021):

—c if crashing W
Ty = o
' NGy + ptrad 5T 4 pectgact otherwise.

In the reward definition ¢ = 1 and A6, is the track advancement at simulation time step t. 6"
indicates the distance to the optimal trajectory at time step ¢, and pt”® is a scaling parameter,
which was heuristically set to be 0.05. 62! is the deviation at time step ¢ from the previous action,
measured as the 2-norm of the difference between the two action vectors. p®* is a tuning parameter
that was also heuristically chosen to be 0.01. The reward is designed in a way to prime the agent
towards the optimal trajectory. The specific values of the parameters were chosen by validating a
coarse choice of logarithmically spaced parameters and choosing the one that yielded the highest
average advancement after a fixed training time. The training and test tracks can be seen in Figure 2.

2.2. Reinforcement Learning Architectures

This section introduces both the frequently used end-to-end RL architecture (Brunnbauer et al.,
2022; Chisari et al., 2021; Fuchs et al., 2021; Wurman et al., 2022) and the RL trajectory tracker, with
their underlying architecture, environment interaction, and hyperparameters. The used environment
is based on an adapted version of the FITENTH gym racing environment (O'Kelly et al., 2020b).
Both RL agents were implemented using the Stable Baselines 3 (SB3) Soft Actor Critic (SAC)
algorithm (Haarnoja et al., 2018), which is an off-policy actor-critic deep RL algorithm that aims
at maximizing the actor’s entropy together with the expected reward. SAC was initialized with

Field Robotics, April, 2023 - 3:637-651

TC-Driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing - 643

Figure 2. Training track F depicted in blue. Testing tracks Autodrome, Catalunya, and Oschersleben, which are
unseen during training. The tracks vary in length from 89 to 470 m. The centerline is depicted in gray.

e
/

agent —action— environment
observation reward I
.
sensors
scans + trajectory + Frenetframe

‘ planner — sensors

Figure 3. Reinforcement learning environment structure. Both observation spaces are depicted in the picture
with dashed borders. They are, however, mutually exclusive; only one at a time is used during training and they
define the two different agents, end-to-end and TC-Driver.

at 0.99, an episode length of 10000, batch size of 64, train frequency of 1, and using the Multilayer
Perceptron (MLP) policy.

2.2.1. End-to-End Racer

To generate a baseline for comparisons, we utilized the frequently used model-free end-to-end
architecture of Chisari et al. (2021), Song et al. (2021), and Fuchs et al. (2021). The chosen
observation space recasts the original observation o0bsyy., in a Frenet frame, which is a representation
relative to a trajectory, as in Chisari et al. (2021), Song et al. (2021), and Fuchs et al. (2021):
0bSFrenet = [P, n,q/},fux,vy,i/}} = [progress along the path, perpendicular deviation from the path,
relative heading, longitudinal velocity, lateral velocity, yaw rate]. An array of LiDAR distance
measurements is also included; compared to the original scan, this is downsampled by taking only
one every 108th scan, making the final scan ijiereq @ 10-element array. The complete observation
reads as follows: 0bSend2end = [SCan fittered, 0bSFrenet]. The final dimension of the observation space
was 16, making the policy network a four-layer MLP with layer size (16, 256, 256, 2), respectively,
and with a Rectified Linear Unit (ReLU) activation function after the second and third layers.
A schematic overview of the RL environment interaction with the end-to-end agent is visible in
Figure 3, as well as a diagram of the Neural Network (NN) in Figure 4. The agent learns a
control policy with online environment interaction based on the previously defined reward function
in Section 2.1. Since such advancement-based rewards were broadly tested (Brunnbauer et al., 2022;
Chisari et al., 2021; Fuchs et al., 2021; Song et al., 2021), we consider this agent a reasonable
comparison model.

Field Robotics, April, 2023 - 3:637-651

644 - Ghignone et al.

Input Dense H H Dense H Output ‘
‘ 16 dim H 256 dim RelU == 256 dim RelU 2 dim

|NN: end—to—end|

Input }; Dense 4{ Dense H Output ‘
[sbaim 256 dim H RelU 256 dim RelU 2 dim

I NN : TC — Driver |

Figure 4. NN architectures for the two policy networks: (top) end-to-end and (bottom) TC-Driver architecture.
The only point of difference between the architectures is the size of the input layer.

2.2.2. Trajectory Conditioned Driver

The proposed trajectory tracker TC-Driver tracks the spatial trajectory generated by a high-level
planner. Within this work, a pre-generated Model Predictive Contouring Controller (MPCC)
trajectory is used for training, which has been custom implemented for this task, following Liniger
et al. (2014). That is, the track has already been traversed by an MPC, and the logged trajectory
can then be used by subsequent RL agents as the optimal tracking trajectory. It is worth mentioning
that this trajectory could be chosen arbitrarily, for example by using the centerline trajectory instead
of the time-optimal MPC trajectory. The observation space of the proposed trajectory tracker is
slightly altered compared with the end-to-end setting. To enable trajectory following, we add a
sample of the optimal trajectory relative to the current position of the car. This sample consists
of 20 points taken at a 20-cm distance from each other, rotated, and translated to be in the car’s
frame of reference. Therefore, the observation space in the spatial trajectory tracking setting is
newly defined as 0bsirq; = [t7aj, 0bScnd2end) = [relative trajectory, scans, progress along the path,
perpendicular deviation from the path, relative heading, longitudinal velocity, lateral velocity, yaw
rate]. The final dimension of the observation space was 56, making the policy network a four-layer
MLP with layer size (56, 256, 256, 2), respectively, and with a ReLU activation function after the
second and third layers. A schematic overview of the RL environment interaction with the TC-Driver
agent is visible in Figure 3, as well as a diagram of the NN in Figure 4. The reward function is as
defined in Section 2.1.

2.3. Tire Parameter Randomization

The FITENTH simulation environment utilizes the single-track dynamic model of Althoff et al.
(2017). To apply randomness to the tire coefficients, Gaussian noise was applied at each reset of the
gym environment during training. The noise was centered at the nominal friction value, used in the
MPC to find the optimal trajectory. To determine the standard deviation, the limit of tire friction at
which MPC would not be able to correctly complete a lap was analyzed. Then the standard deviation
of the noise was set to be half of that value for the noise to be mostly (but not entirely) inside the
range of values that allow MPC to finish a lap. The numerical values are fi,oisy ~ N (1.0489, 0.0375).

3. Experimental Results

This section evaluates the proposed trajectory tracking agent against the end-to-end agent with the
tire parameter randomization during training. We furthermore compare the results of the ML-based
agents with an MPC agent which does not know the correct parameters, to simulate parameter
mismatch. Evaluation metrics consist of lap time, the ability to handle different track conditions,

Field Robotics, April, 2023 - 3:637-651

TC-Driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing - 645

Trajectories, end-to-end Trajectories, TC-Driver Trajectories, MPC

Figure 5. Agents that were trained under tire friction randomization within the MPC tolerance are tested in an
environment outside of the trained tire friction domain. Left is the end-to-end agent; middle shows the proposed
TC-Driver; right shows MPC. Crosses are used to indicate crashes into the track walls; as it can be seen, only
TC-Driver manages to drive in the shown chicane. Models were tested for 200 runs on the training track F.

and the ability to drive on unseen tracks. In simulation, the optimal trajectory of a MPC with exact
model parameters (without tire noise, hence with zero model mismatch) is used as the ground truth
reference. For all the results presented in this work, every agent was trained for 5 x 10° time steps
on the track named F, which can be seen in Figure 2.

3.1. Robustness to Tire Modeling Mismatch

To test the capabilities of the algorithms to generalize to different tire friction, 200 randomly
extracted values were utilized during test laps. To better test the generalization capabilities, these
friction parameters were extracted in an interval that was predominantly outside the training range.
Namely, the normal distribution had a mean 0.2 lower than the nominal one, with the same standard
deviation as in the training phase, i.e., 0.0375, thus making the track considerably more slippery.
The MPC was run with the nominal system model, i.e., the tires’ friction was not changed, to
simulate model mismatch. The three different models were run on the track, starting from the same
position, for one lap. In Figure 5 one can see a trajectory extract, with the 200 laps superimposed
one on the other.

Due to parameter mismatch, MPC suffers an 80.50% crash ratio; the domain-randomization-aware
end-to-end agent instead yields a 73.50% crash ratio. TC-Driver heavily outperforms both methods,
with a crash ratio of only 2.5%, improving by a factor of ~ 32 on the result of MPC and by a factor of
~ 29 on the result of the end-to-end agent. This increase in robustness comes with only a marginally
lower lap time when compared to MPC: TC-Driver is only ~ 7% slower, with a lap time of 10.798 s
opposed to 10.094 s of the MPC. When TC-Driver is compared to the end-to-end agent instead, it
turns out to be faster, as the end-to-end agent has an average lap time of 11.148 s. The lower lap
time of MPC should not, however, be considered as higher performance, as the excessive amount of
crashing makes it a nonsuitable controller in this setting. Especially if the average lap completion
across the experiments is taken into account, it is clear that TC-Driver is the only controller robust
enough in this situation: it completes on average 99.37% of the lap, while the end-to-end method
only completes 52.52% on average, and the MPC only 32.67%, showing that they have consistent
problems with this amount of model mismatch.

Regarding the MPC it has to be said that such a high crash ratio is expected, as the tire mismatch
is purposely chosen to make it fail. A solution for such a situation would be the integration of
learnable parameters within the MPC model, as in Jain et al. (2021). Hence, this result does not
exhibit superiority to the general class of MPC but rather demonstrates a case in which RL can be
utilized in the mitigation of model mismatch.

Field Robotics, April, 2023 - 3:637-651

646 - Ghignone et al.

Trajectories, end-to-end Trajectories, TC-Driver Trajectories, MPC

Autodrome track

Catalunya track

Oschersleben track

Figure 6. Simulated generalization runs of the end-to-end, TC-driver, and MPC algorithms from left to right,
on the unseen test tracks Autodrome, Catalunya, and Oschersleben, respectively, from top to bottom. It consists
of 200 runs without tire friction randomization. Both RL agents were trained solely on the F track.

3.2. Track Generalization Capabilities

To test the trajectory-conditioned driver’s ability to generalize to race tracks beyond the training
track of F, it was evaluated on three additional unforeseen tracks, namely Autodrome, Catalunya,
and Oschersleben, without tire parameter randomization, as visible in Figure 2. The tracks were
obtained from the open-source repository accompanying Heilmeier et al. (2020). The agents were
started at 200 different positions along these tracks and drove a single lap each. To further emphasize
the generalization capabilities to arbitrary trajectories, the trajectories used for conditioning the
TC-Driver were obtained from the minimum curvature optimizer shown in Heilmeier et al. (2020),
instead of the MPCC traversed trajectory as utilized during training.

Table 3 depicts the described runs on the unseen tracks visible in Figure 6. The MPC clearly
outperforms both RL methods, as expected in a zero-model-mismatch setting, where the optimality
within the receding horizon holds. It shows the fastest lap times on all test tracks with the lowest
standard deviation, while never crashing, as it has perfect model knowledge. Regarding the RL
agents, we notice that the end-to-end agent is not able to generalize to the different new tracks
effectively, never managing to complete more than 5% of the laps. Specifically, on the Oschersleben
track, it never manages to complete a lap. On the other hand, TC-Driver manages to successfully
generalize to Autodrome and to complete more than 40% of the laps on Catalunya. It only struggles
to complete Oschersleben, achieving lap completion only 6% of the time. Looking at the average
advancement comparison, we notice that TC-Driver outperforms the other RL agent in all cases. On
the worst performing track, Oschersleben, TC-Driver still completes more than twice the distance
of the end-to-end driver, and in the best case, our proposed agent completes on average 2.7 more
lap lengths, in the circuit called Autodrome.

Field Robotics, April, 2023 - 3:637-651

TC-Driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing - 647

Looking at the lap times, we see that the end-to-end agent achieves significantly lower lap times,
displaying aggressive behavior. This characteristic of the controller causes the end-to-end agent
to crash frequently, not allowing it to complete a single lap and therefore does not demonstrate
robustness to track generalization. We argue that the main reason for crashing could be the
particularly different features present in some of the testing tracks. We used three real-world
downscaled tracks, that all present some features which are not specifically present in the F' training
track. A specific feature that is not present in the training track F' is that of a high-speed chicane,
which consists of a fast left and subsequent right turn (or vice versa), and it can be seen in the
last rows of Figure 6, as a part of the track Oschersleben. Here we can see two of the high-speed
chicanes, and we can see that TC-Driver also occasionally fails at driving in this situation.

3.3. Computational Time

We focus on the computational time of the utilized control methods. Table 4 depicts the average
computational time of each method and their respective standard deviation. The following compu-
tations were performed on an Intel i7-10700K CPU. The MPC’s average computation duration is
approximately 11 ms with a rather high standard deviation of 0.9 ms. The reason for the higher
deviation arises from the nature of quadratic programming, which is subject to constantly varying
solving conditions. On the other hand, both RL algorithms show a significantly lower and more
constant inference time of approximately 0.26 ms. Thus, the RL computation time is faster by a
factor of roughly 40, showing the potential of ML to bring high-performance and robust control
methods to resource-constrained embedded hardware.

3.4. Sim2Real Capacities

To investigate and validate the simulation results of the proposed architecture, the Sim2Real
capability of TC-Driver is demonstrated on a physical race car in the 1:10 form factor, namely,
the FITENTH platform (O’Kelly et al., 2020a). The robot is built upon the off-the-shelf Trazzas
4x4 Slash race chassis and power train, driven by a VESC 6 MkEIV Electronic Speed Controller
(ESC). Furthermore, the robot sensors consist of the integrated inertial measurement unit of the
ESC, as well as a Hokuyo UST-10LX laser range measurement sensor. The onboard computer is
a NUC10i3FNKNI3-10110U running standard Ubuntu 20.04 and Robot Operating System (ROS)
Noetic. A state estimator as well as a trajectory planner have been implemented, capable of emulating
both previously introduced observation spaces 0bsirq; and obsepdzend. The state estimator consists
of a simultaneous localization and mapping algorithm based on Hess et al. (2016) for positional
estimates and an extended Kalman filter based on Moore and Stouch (2014) for velocity estimates,
ultimately allowing for the estimation of the complete dynamic state as in Polack et al. (2017) and
Althoff et al. (2017). The trajectory planner computes a globally optimal trajectory of a given track,
with respect to minimum curvature, based on Heilmeier et al. (2020), which is the same planner as
used previously in Section 3.2. Finally, a ROS wrapper allows feeding the proper observation to the
RL model, which in turn infers the actions for the actuators of the robot. Our hardware platform
and the racetrack setup are shown in Figure 7.

3.4.1. Zero-Shot Sim2Real Track Generalization

Both the end-to-end and the TC-Driver RL agents are deployed on a physical racetrack outside
of their training distribution without any model refinement. Thus the agents have to demonstrate
zero-shot Sim2Real capabilities directly out of the simulator environment to the physical system,
as we quantify their respective performance in terms of lap time and crash ratio, by repeating the
runs 10 times each in both clockwise and counterclockwise directions. Both the deployed agents
have been trained purely in simulation and for the same duration as in Section 3. They also have
the same action space and run on the same physical platform on the same track, thus serving fair
comparison conditions.

Field Robotics, April, 2023 - 3:637-651

648 - Ghignone et al.

Figure 7. On the left, the physical FITENTH system for Sim2Real RL deployment. On the right, a corner of
the real testing track.

End-to-end TC-Driver

2m

Figure 8. Physical zero-shot generalization run of the end-to-end and TC-driver algorithms from left to right,
on an unseen track. Clockwise runs were repeated 10 times each.

As can be seen in Figure 8, the proposed TC-Driver yields superior zero-shot generalization
capabilities when compared to the end-to-end setting. This coincides with the results of the
simulation environment in Table 3. TC-Driver tracks the optimal race line significantly closer, as well
as with lower variance, than the end-to-end agent. As is visible from Table 5, TC-Driver outperforms
the end-to-end architecture in terms of crash ratio, by only crashing twice, thus resulting in a 10%
crash ratio and a mean lap time ¢,, of 20.281 s with a very constant lap time standard deviation ¢,
of 0.371 s, indicating a deterministic behavior. Interesting to mention is that TC-Driver manages to
retain similar metrics in terms of lap time standard deviation t, and crash ratio, as achieved in the
simulation in Table 3, on a completely different track. The end-to-end agent, on the other hand, is
not able to perform a single lap without crashing; thus both lap time ¢, and the respective standard
deviation t, do not yield a measurable value.

4. Conclusion

This paper presented TC-Driver, a hybrid RL approach to autonomous racing, that utilizes the
heuristic nature of RL and the reliability of traditional planning techniques. Given the imperfect
modeling of parameters, MPC’s optimality does not hold, leading to slower lap times and potentially
even crashes. RL offers a viable approach to this solution by generalizing to different driving
conditions, yet end-to-end RL methods rely on states that are not fit for efficient generalization
to different tracks or to model mismatch. Combining a traditionally generated trajectory in an
observation for an RL agent tracking the trajectory under changing driving conditions alleviates
these shortcomings. We evaluated and compared these approaches both in the simulated FITENTH

Field Robotics, April, 2023 - 3:637-651

TC-Driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing - 649

autonomous racing environment (O’'Kelly et al., 2020b) as well as on the physical FITENTH
platform (O’Kelly et al., 2020a). The proposed TC-Driver architecture shows that it can adapt
to model mismatch scenarios that a non-learning-based MPC fails to handle (Liniger, 2021). It
achieves lower and more consistent lap times, compared to the end-to-end agent based on Chisari
et al. (2021), Fuchs et al. (2021), and Song et al. (2021), and has by far the lowest overall crash ratio
in the model mismatch setting (MPC, 80.50%); end-to-end, 73.50%; TC-Driver, 2.50%). Furthermore,
when deployed on test tracks that have significantly different features than the training track, our
agent is capable of completing laps, demonstrating zero-shot track generalization capabilities, unlike
previous end-to-end architectures (crash ratio in Autodrome track: end-to-end, 96%; TC-Driver,
8%). Lastly, experimental results demonstrate zero-shot Sim2Real generalization capabilities on a
custom-built racing platform and track. The physical test also yields similar consistency metrics as
in simulation in terms of lap time deviation with ¢, ~ 0.373 s and displays a 10-fold lower crash
ratio than the end-to-end agent in a zero-shot Sim2Real setting.

Future work on this topic regards the alleviation of the bang-bang control characteristics that
are in the nature of the RL architecture. This could potentially be mitigated by introducing output
regularization such as in Chisari et al. (2021) or the introduction of Bernoulli policies (Seyde et al.,
2021). Lastly, a highly interesting RL approach would be the utilization of a model-based RL
architecture as well as the integration of a recurrent neural network architecture, as inspired by
Brunnbauer et al. (2022). As the computational effort required by ML techniques is greatly inferior to
the effort required for optimal control techniques (~ 40 times in our case), we deem this a promising
line of work for bringing high-performance racing algorithms to real hardware-constrained platforms.

The code for reproducing all mentioned RLL and MPCC FITENTH implementations, as well as
further result material, is available at https://github.com/ETH-PBL/TC-Driver.

Acknowledgments

We would like to thank Dr. Christian Vogt, Dr. Andrea Carron, and Dr. Alexander Liniger of ETH
Ziirich for their constructive and fruitful algorithmic discussions and Dr. Niao He, whose RL lecture
project at ETH enabled the initial steppingstone for this work.

ORCID

Edoardo Ghignone ® https://orcid.org/0000-0003-3843-2661
Nicolas Baumann ® https://orcid.org/0000-0001-6591-1321
Michele Magno ® https://orcid.org/0000-0003-0368-8923

References

Althoff, M., Koschi, M., and Manzinger, S. (2017). CommonRoad: Composable benchmarks for motion
planning on roads. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 719-726, Los Angeles, CA.
IEEE.

Andrychowicz, O. M., Baker, B., Chociej, M., J6zefowicz, R., McGrew, B., Pachocki, J., Petron, A., Plappert,
M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L., and Zaremba, W. (2020).
Learning dexterous in-hand manipulation. International Journal of Robotics Research, 39(1):3-20.

Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare, V., Roy, G., Sun, T., Tao, Y., Townsend, B.,
Calleja, E., Muralidhara, S., and Karuppasamy, D. (2020). DeepRacer: Autonomous racing platform for
experimentation with Sim2Real reinforcement learning. In ICRA 2020.

Betz, J., Zheng, H., Liniger, A., Rosolia, U., Karle, P., Behl, M., Krovi, V., and Mangharam, R. (2022).
Autonomous vehicles on the edge: A survey on autonomous vehicle racing. ICRA21 Autonomous Racing.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. (2016).
OpenAl Gym.

Brown, M., and Gerdes, J. C. (2020). Coordinating tire forces to avoid obstacles using nonlinear model
predictive control. IEEE Transactions on Intelligent Vehicles, 5:21-31.

Field Robotics, April, 2023 - 3:637-651

https://github.com/ETH-PBL/TC-Driver
https://github.com/ETH-PBL/TC-Driver
https://orcid.org/0000-0003-3843-2661
https://orcid.org/0000-0003-3843-2661
https://orcid.org/0000-0001-6591-1321
https://orcid.org/0000-0001-6591-1321
https://orcid.org/0000-0003-0368-8923
https://orcid.org/0000-0003-0368-8923

650 - Ghignone et al.

Brunnbauer, A., Berducci, L., Brandstaetter, A., Lechner, M., Hasani, R., Rus, D., and Grosu, R. (2022).
Latent imagination facilitates zero-shot transfer in autonomous racing. In 2022 International Conference
on Robotics and Automation (ICRA), pages 7513-7520.

Carrau, J. V., Liniger, A., Zhang, X., and Lygeros, J. (2016). Efficient implementation of randomized MPC
for miniature race cars. In 2016 European Control Conference (ECC), pages 957-962, Piscataway, NJ.
IEEE.

Chisari, E., Liniger, A., Rupenyan, A., Van Gool, L., and Lygeros, J. (2021). Learning from simulation,
racing in reality. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
8046-8052.

Crayton, T. J., and Meier, B. M. (2017). Autonomous vehicles: Developing a public health research agenda
to frame the future of transportation policy. Journal of Transport €& Health, 6:245-252.

de Bruin, T., Kober, J., Tuyls, K., and Babuska, R. (2018). Integrating state representation learning into
deep reinforcement learning. IEEE Robotics and Automation Letters, 3(3):1394-1401.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R.,
Abdolmaleki, A., Casas, D., Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., Tsimpoukelli,
M., Kay, J., Merle, A., Moret, J.-M., and Riedmiller, M. (2022). Magnetic control of tokamak plasmas
through deep reinforcement learning. Nature, 602:414-419.

Frohlich, L. P., Kuttel, C., Arcari, E., Hewing, L., Zeilinger, M. N., and Carron, A. (2021). Model learning
and contextual controller tuning for autonomous racing. arXiv preprint arXiw:2110.02710.

Fuchs, F., Song, Y., Kaufmann, E., Scaramuzza, D., and Durr, P. (2021). Super-human performance
in Gran Turismo Sport using deep reinforcement learning. IFEE Robotics and Automation Letters,
6(3):4257-4264.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290.

Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz, J., Lienkamp, M., and Lohmann, B. (2020).
Minimum curvature trajectory planning and control for an autonomous race car. Vehicle System
Dynamics, 58(10):1497-1527.

Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). Real-time loop closure in 2D LIDAR SLAM. In
2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1271-1278.

Jain, A., O’Kelly, M., Chaudhari, P., and Morari, M. (2021). BayesRace: Learning to race autonomously
using prior experience. In Kober, J., Ramos, F., and Tomlin, C., editors, Proceedings of the 2020
Conference on Robot Learning, volume 155 of Proceedings of Machine Learning Research, pages 1918-1929.
PMLR.

Jung, S., Cho, S., Lee, D., Lee, H., and Shim, D. H. (2018). A direct visual servoing-based framework for
the 2016 IROS autonomous drone racing challenge. Journal of Field Robotics, 35(1):146-166.

Kabzan, J., Valls, M. 1., Reijgwart, V. J. F., Hendrikx, H. F. C.; Ehmke, C., Prajapat, M., Biihler, A.,
Gosala, N., Gupta, M., Sivanesan, R., Dhall, A., Chisari, E., Karnchanachari, N., Brits, S., Dangel, M.,
Sa, I., Dubé, R., Gawel, A., Pfeiffer, M., Liniger, A., Lygeros, J., and Siegwart, R. (2020). AMZ driverless:
The full autonomous racing system. Journal of Field Robotics, 37(7):1267-1294.

Law, C. K., Dalal, D., and Shearrow, S. (2018). Robust model predictive control for autonomous vehicles/self
driving cars. arXiv preprint arXiv:1805.08551.

Li, D., Zhao, D., Zhang, Q., and Chen, Y. (2018). Reinforcement learning and deep learning based lateral
control for autonomous driving. arXiv preprint arXiv:1810.12778.

Liniger, A. (2021). Pushing the limits of friction: A story of model mismatch. ICRA21 Autonomous Racing.

Liniger, A., Domahidi, A., and Morari, M. (2014). Optimization-based autonomous racing of 1:43 scale RC
cars. Optimal Control Applications and Methods, 36(5):628-647.

Loquercio, A., Kaufmann, E., Ranftl, R., Dosovitskiy, A., Koltun, V., and Scaramuzza, D. (2020). Deep
drone racing: From simulation to reality with domain randomization. [IEEE Transactions on Robotics,
36(1):1-14.

Lyu, C., Lu, D., Xiong, C., Hu, R., Jin, Y., Wang, J., Zeng, Z., and Lian, L. (2022). Toward a gliding hybrid
aerial underwater vehicle: Design, fabrication, and experiments. Journal of Field Robotics, 39(5):543—-556.

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter, M. (2022). Learning robust
perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822.

Moore, T. and Stouch, D. (2014). A generalized extended Kalman filter implementation for the robot
operating system. In Proceedings of the 13th International Conference on Intelligent Autonomous Systems
(IAS-13). Springer.

Field Robotics, April, 2023 - 3:637-651

TC-Driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing - 651

O’Kelly, M., Zheng, H., Jain, A., Auckley, J., Luong, K., and Mangharam, R. (2020a). TUNERCAR: A
superoptimization toolchain for autonomous racing. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 5356-5362.

O’Kelly, M., Zheng, H., Karthik, D., and Mangharam, R. (2020b). F1TENTH: An open-source evaluation
environment for continuous control and reinforcement learning. In NeurlPS 2019 Competition and
Demonstration Track, pages 77-89. PMLR.

Pacejka, H. B. (2012). Tire characteristics and vehicle handling and stability. In Pacejka, H. B., editor,
Tire and Vehicle Dynamics (Third Edition), Chapter 1, pages 1-58. Butterworth-Heinemann, Oxford.
Polack, P., Altché, F., d’Andréa Novel, B., and de La Fortelle, A. (2017). The kinematic bicycle model:
A consistent model for planning feasible trajectories for autonomous vehicles? In 2017 IEEE Intelligent

Vehicles Symposium (IV), pages 812-818.

Raji, A., Liniger, A., Giove, A., Toschi, A., Musiu, N., Morra, D., Verucchi, M., Caporale, D., and Bertogna,
M. (2022). Motion planning and control for multi vehicle autonomous racing at high speeds. Accepted
to the 25th IEEE International Conference on Intelligent Transportation Systems (IEEE ITSC 2022).

Rosolia, U., and Borrelli, F. (2020). Learning how to autonomously race a car: A predictive control approach.
IEEE Transactions on Control Systems Technology, 28(6):2713-2719.

Seyde, T., Gilitschenski, I., Schwarting, W., Stellato, B., Riedmiller, M., Wulfmeier, M., and Rus, D. (2021).
Is bang-bang control all you need? Solving continuous control with Bernoulli policies. arXiv preprint
arXiv:2111.02552

Song, Y., Lin, H., Kaufmann, E., Diurr, P., and Scaramuzza, D. (2021). Autonomous overtaking in Gran
Turismo Sport using curriculum reinforcement learning. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 9403-94009.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

Wang, Y., Advani, S. G., and Prasad, A. K. (2020). A comparison of rule-based and model predictive
controller-based power management strategies for fuel cell/battery hybrid vehicles considering degrada-
tion. International Journal of Hydrogen Energy, 45(58):33948-33956.

Werling, M., Ziegler, J., Kammel, S., and Thrun, S. (2010). Optimal trajectory generation for dynamic
street scenarios in a Frenét frame. In 2010 IEEE International Conference on Robotics and Automation,
pages 987-993.

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T. J., Capobianco,
R., Devlic, A., Eckert, F., Fuchs, F., Gilpin, L., Khandelwal, P., Kompella, V., Lin, H., MacAlpine, P.,
Oller, D., Seno, T., Sherstan, C., Thomure, M. D., Aghabozorgi, H., Barrett, L., Douglas, R., Whitehead,
D., Dirr, P., Stone, P., Spranger, M., and Kitano, H. (2022). Outracing champion Gran Turismo drivers
with deep reinforcement learning. Nature, 602(7896):223-228.

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. (2020). A survey of autonomous driving: Common
practices and emerging technologies. IEEE Access, 8:58443-58469.

How to cite this article: Ghignone, E., Baumann, N., & Magno, M. (2023). TC-Driver: A trajectory conditioned
reinforcement learning approach to zero-shot autonomous racing. Field Robotics, 3, 637-651.

Publisher’s Note: Field Robotics does not accept any legal responsibility for errors, omissions or claims and
does not provide any warranty, express or implied, with respect to information published in this article.

Field Robotics, April, 2023 - 3:637-651

