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Abstract—The classical method of autonomous racing uses real-
time localisation to follow a precalculated optimal trajectory. In
contrast, end-to-end deep reinforcement learning (DRL) can train
agents to race using only raw LiDAR scans. While classical meth-
ods prioritise optimization for high-performance racing, DRL ap-
proaches have focused on low-performance contexts with little
consideration of the speed profile. This work addresses the prob-
lem of using end-to-end DRL agents for high-speed autonomous
racing. We present trajectory-aided learning (TAL) that trains
DRL agents for high-performance racing by incorporating the
optimal trajectory (racing line) into the learning formulation. Our
method is evaluated using the TD3 algorithm on four maps in the
open-source F1Tenth simulator. The results demonstrate that our
method achieves a significantly higher lap completion rate at high
speeds compared to the baseline. This is due to TAL training the
agent to select a feasible speed profile of slowing down in the corners
and roughly tracking the optimal trajectory.

Index Terms—Deep learning methods, machine learning for
robot control, reinforcement learning.

I. INTRODUCTION

AUTONOMOUS racing is a useful testbed for high-
performance autonomous algorithms due to the nature of

competition and the easy-to-measure performance metric of lap
time [1]. The aim of autonomous racing is to use onboard sensors
to calculate control references that move the vehicle around the
track as quickly as possible. Good racing performance operates
the vehicle on the edge of its physical limits between going too
slowly, which is poor racing behaviour, and going too fast, which
results in the vehicle crashing.

The classical robotics approach uses control systems that
depend on explicit state estimation to calculate references for the
robot’s actuators [2]. Classical racing systems use a localisation
algorithm to determine the vehicle’s pose on a map, which a
path follower uses to track an optimal trajectory [3]. Methods
requiring explicit state representation (localisation) are limited
by requiring a map of the track and being inflexible to environ-
mental changes [4].
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Fig. 1. Our method achieves significantly higher average progress around the
track at high speeds than the baseline.

In contrast to classical methods, deep learning agents use
a neural network to map raw sensor data (LiDAR scans) di-
rectly to control commands without requiring explicit state
estimation [5]. Deep reinforcement learning (DRL) trains neural
networks from experience to select actions that maximise a
reward signal [6]. Previous DRL approaches have presented
end-to-end solutions for F1Tenth racing but have been limited to
low speeds [7], [8], and have lacked consideration of the speed
profile [9].

This letter approaches the problem of how to train DRL
agents for high-speed racing using only a LiDAR scan as in-
put. We provide insights on learning formulations for training
DRL agents for high-performance control through the following
contributions:

1) Present trajectory-aided learning (TAL), which uses an
optimal trajectory to train DRL agents for high-speed
racing using raw LiDAR scans as input.

2) Demonstrate that TAL improves the completion rate of
DRL agents at high speeds compared to the baseline
learning formulation, as shown in Fig. 1.

3) Demonstrate that TAL agents select speed profiles sim-
ilar to the optimal trajectory and outperform related ap-
proaches in the literature.

II. LITERATURE STUDY

We study methods of autonomous racing in the categories of
classical methods and end-to-end learning. Fig. 2 shows how the
classical racing pipeline uses a localisation module to enable a
planner to track a precomputed optimal trajectory, and end-to-
end learning replaces the entire pipeline with a neural network-
based agent.
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Fig. 2. Classical racing stack using localisation and planning modules, and
end-to-end racing using a neural network without state estimation.

A. Classical Racing

The classical racing method calculates an optimal trajectory
and then uses a path-following algorithm to track it [1]. Trajec-
tory optimisation techniques calculate a set of waypoints (posi-
tions with a speed reference) on a track that, when followed, lead
the vehicle to complete a lap in the shortest time possible [3]. A
path-following algorithm tracks the trajectory using the vehicle’s
pose as calculated by a localisation algorithm.

Localisation: Localisation approaches for autonomous racing
depend on the sensors and computation available. Full-sized
racing cars are often equipped with GPS (GNSS), LiDAR,
radar, cameras, IMUs, and powerful computers that can fuse
these measurements in real-time [10]. Classical F1Tenth racing
approaches have used a particle filter that takes a LiDAR scan
and a map of the track to estimate the vehicle’s pose [2], [4],
[11]. Localisation methods are inherently limited by requiring a
race track map and, thus, are inflexible to unmapped tracks.

Classical Path-Following: Model-predictive controllers
(MPC) and pure pursuit path-followers have been used for
trajectory tracking [1]. MPC planners calculate optimal con-
trol commands in a receding horizon manner [12] and have
demonstrated high-performance results racing F1Tenth vehicles
at speeds of up to 7 m/s [2]. The pure pursuit algorithm uses
a geometric model to calculate a steering angle to follow the
optimal trajectory [13], and has been used to race at speeds of
7 m/s [11] and over 8 m/s [14].

Learning-based Path-following: Classical path-following al-
gorithms have been replaced by neural networks, aiming to
improve computational efficiency (compared to MPC) [12],
[15] and performance in difficult-to-model conditions such as
drifting [16]. Including upcoming trajectory points in the state
vector (as opposed to only centerline points [15]) has shown to
improve racing performance [17], [18]. This shows demonstrates
that using the optimal trajectory results in high-performance
racing.

While classical and learning-based path-following methods
have produced high-performance results, they are inherently
limited by requiring the vehicle’s location on the map.

B. End-to-end Learning

In contrast to classical methods that use a perception, planning
and control pipeline, end-to-end methods use a neural network
to map raw sensory data to control references [9]. While some

approaches have used camera images [19], the dominant input
has been LiDAR scans [7], [9], [20].

Autonomous Driving: End-to-end learning agents can use a
subset of beams from a LiDAR scan to output steering references
that control a vehicle travelling at constant speed [7]. While
imitation learning (IL) has been used to train agents to copy an
expert policy [21], deep reinforcement learning, has shown bet-
ter results, with higher lap completion rates [7]. DRL algorithms
train agents in an environment (simulation [7] or real-world
system [20]), where at each timestep, the agent receives a state,
selects an action and then receives a reward. DRL approaches to
driving F1Tenth vehicles have considered low, constant speeds
of 1.5 m/s [7], [22], 2 m/s [20], and 2.4 m/s [8]. While indicating
that DRL agents can control a vehicle, these methods neglect the
central racing challenge of speed selection.

Autonomous Racing: Using model-free end-to-end DRL
agents to select speed and steering commands for autonomous
racing is a difficult problem [23], [24]. In response, Brunnbauer
et al. [23] turned to model-based learning and Zhang et al. [24]
incorporated an artificial potential field planner in the learning
to simplify the learning problem. Both [23] and [24] show that
their agents regularly crash while using top speeds of only
5 m/s, demonstrating the difficulty of learning for high-speed
autonomous racing. Bosello et al. [9] use a model-free DRL
algorithm (DQN) for F1Tenth racing at speeds of up to 5 m/s,
but provide no detail on the speed profile, trajectory or crash
rate.

Summary: Classical racing methods have produced high-
performance racing behaviour using high maximum speeds but
are limited by requiring localisation. In contrast, end-to-end
DRL agents are successful in controlling vehicles at low speeds
using only the LiDAR scan as input. While some methods have
approached speed selection using DRL agents, there has been
little study on the speed profiles selected, and the highest speed
used is 5 m/s, which is significantly less than classical methods of
8 m/s. This letter targets the gap in developing high-performance
racing solutions for steering and speed control in autonomous
race cars.

III. METHODOLOGY

A. Reinforcement Learning Preliminary

Deep reinforcement learning (DRL) trains autonomous
agents, consisting of deep neural networks, to maximise a reward
signal from experience [6]. Reinforcement learning problems
are modelled as Markov Decision Processes (MDPs), where the
agent receives a state s from the environment and selects an
action a. After each action has been executed, the environment
returns a reward r indicating how good or bad the action was
and a new state s′.

This work considers deep-deterministic-policy-gradient
(DDPG) algorithms since we work with a continuous action
space [25]. DDPG algorithms maintain two neural networks, an
actor μ that maps a state to an action and a criticQ that evaluates
the action-value function. A pair of networks are maintained for
the actor and the critic; the model networks are used to select
actions, and target networks calculate the targets μ′ and Q′. A

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 14,2024 at 05:00:32 UTC from IEEE Xplore.  Restrictions apply. 



EVANS et al.: HIGH-SPEED AUTONOMOUS RACING USING TRAJECTORY-AIDED DEEP REINFORCEMENT LEARNING 5355

Fig. 3. DRL agent receives a state, selects an action that is implemented, and a
reward based on the agent’s action and vehicle’s position is calculated and given
to the agent.

replay memory collects the agent’s experience of acting and
receiving rewards. After each step, a batch of N transitions
is randomly sampled from memory and used to update the
networks.

The critic is trained to learn the Q-value for each state-action
pairQ(s, a). For each transition, j in the batch, the bootstrapped
target yj is calculated using the Bellman equation by adding the
reward earned and the discounted Q-value for the next state if
the agent follows its target policy. The actor, parameterised by
θ, is trained to maximise the objective J(θ) of selecting actions
with high Q-values. The gradient that maximises the objective
J(θ) is calculated as,

∇θJ(θ) =
1

N

∑

j

∇θQ(sj , μ(sj)). (1)

After each network update, a soft update is applied to adjust the
target networks towards the model networks.

The twin-delayed-DDPG (TD3) algorithm improves the orig-
inal DDPG algorithm by using a pair of Q-networks and smooth-
ing the policy by adding noise to the actions selected by target
policy [26]. The TD3 Q-targets are calculated using the mini-
mum of the pair of Q-networks,

yj = rj + γ min
i=1,2

Q′
i(s

′
j , μ

′(s′j) + ε)

ε ∼ clip(N (0, σ),−c, c). (2)

In the equation, γ is the discount factor, i is the number of the
Q-network (i.e. Q′

1, Q
′
2), μ′ is the target actor network, ε is the

clipped noise sampled from the normal distribution N , and c
is the noise clipping constant. The TD3 algorithm introduces
delayed policy updates by only updating the policy network after
every second Q-network update.

B. End-to-end Learning Problem Formulation

End-to-end learning replaces the entire processing pipeline
with a learning agent. The input to the agent is a state vector
representing the environment, and the output is an action vector
used to control the vehicle. Fig. 3 shows the flow of information
with the agent receiving a state consisting of the LiDAR scan
and selecting an action of a speed and steering angle. A reward
is calculated based on the agent’s action and the vehicle’s pose
in the environment.

State Vector: The agent uses a state vector of 20 evenly spaced
beams from the LiDAR scan with a field of view of π radians.

Fig. 4. Trajectory-aided learning reward is calculated using the difference
between the agent action uagent and classic planner action uclassic.

The LiDAR scans from the previous and current planning steps
are stacked together so that the agent can infer the vehicle’s
speed. Each beam is scaled according to the maximum of 10 m,
resulting in values between 0 and 1 used as input into the neural
network.

Action Vector: The agent outputs two continuous actions in
the range [−1, 1], which are used for the two control variables of
steering angle and speed. The steering action is scaled according
to the maximum steering angle, and the speed is scaled to the
range [1, vmax] m/s, where vmax is the maximum speed. The
minimum speed of 1 m/s is prevents the vehicle from not moving.

C. Trajectory-Aided Learning

We present trajectory-aided learning (TAL), a reward signal
that trains an agent to follow the optimal trajectory. Our approach
is motivated by the literature showing that classical solutions
using trajectory optimisation and path-following approaches
achieve high-performance racing [10], [14]. While imitation
learning from expert data (including from a pure pursuit ex-
pert [21]) has demonstrated poor lap completion results [7],
deep reinforcement learning has successfully trained agents
to race [9]. Therefore, we propose incorporating a classical
solution in the DRL reward signal to train end-to-end agents
for high-performance racing.

TAL Reward: The reward signal should train the agent to drive
as fast as possible while maintaining safety and not crashing. A
base reward of giving a punishment of −1 for crashing and a
reward of 1 for lap completion is combined with a shaped reward
that encourages high-performance racing. Fig. 4 shows how the
shaped trajectory-aided learning reward is calculated using the
difference between the agent action and the action that a classic
planner would have selected. We write the reward as,

rTAL = 1− |vagent − vclassic| − |δagent − δclassic|, (3)

where v represents the speed and δ the steering angle. In this
equation, the subscript “classic” refers to the actions the classical
planner would select, and the subscript “agent” refers to the
action selected by the agent. The shaped reward is scaled by 0.2
and clipped to be above 0.

Classical Planner: The high-performance behaviour of the
classic planner is a guide for the learning agent. Fig. 4 shows how
the classic planner action is calculated using the vehicle pose,
optimal trajectory and a path-following algorithm. The classical
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Fig. 5. Map shapes of the AUT, ESP, GBR, and MCO (left to right) tracks.

Fig. 6. Single-track bicycle model used by the F1Tenth simulator.

planner uses the trajectory optimisation method presented by
Heilmeier et al. [3] to calculate a minimum curvature path with
a minimum time speed profile. The pure pursuit path-following
algorithm [13] is used to track the optimal trajectory. The clas-
sical planner selects the speed of the upcoming way-point as its
speed action.

D. Baseline Learning Formulation

We compare our approach to a baseline reward encouraging
the vehicle to track the centre line. The baseline retains the
standard reward of 1 for completing a lap and −1 for crashing.
At each step, a cross-track and heading reward is given to the
agent to reward velocity in the track direction and punish lateral
deviation [19]. The reward is written as,

r baseline =
vt

vmax
cosψ − dc, (4)

where vt is the vehicle’s speed, vmax is the maximum speed, ψ
is the heading error angle, and dc is the cross-track distance.

IV. EVALUATION

A. Experiment Design

We evaluate our approach using the open-source F1Tenth
simulator in [27]. The simulator is modelled on the Gym style
environments with a step method that takes an action and re-
turns a state. The LiDAR scan is simulated using a ray-casting
algorithm, and noise with a standard deviation of 0.01 is added
to each beam. Planning in the simulator takes place at 10 Hz,
while the internal dynamics updates at 100 Hz. Fig. 5 shows the
shapes of the four training maps, AUT, ESP, GBR and MCO,
that are used in the evaluation.

Vehicle Model: The simulator represents the vehicle using
the kinematic bicycle model [28]. Fig. 6 shows the model
representing the vehicle with the state variables of position
x, y, speed v, orientation (yaw) θ, yaw rate θ̇ steering angle
δ and slip angle β. The 7-dimensional state is updated using
the single-track bicycle model equations presented in [28]. The
model takes the parameters of vehicle mass, wheelbase length,
height, cornering stiffness, coefficient of friction and moment
of inertia. The single-track model assumes a linear relationship
between the slip angle and the lateral force, resulting in the model

Fig. 7. Average progress during training of the baseline and TAL agents on
the ESP map.

being accurate for small slip angles (≈< 8◦) but inaccurate for
higher slip angles.

Learning Implementation: The experiments use neural net-
works with two hidden layers of 100 neurons each. The ReLU
activation function is used after each hidden layer, and the tanh
function for the output layer to scale the output to the range
[−1, 1]. The TD3 algorithm uses the Adam optimiser with a
learning rate of 0.001, a batch size of 100, a discount factor of
0.99, exploration noise of 0.1, action smoothing noise of 0.2 and
noise clipping at 0.5.

Experiments: The evaluation compares the ability of the base-
line (§III-D) and TAL learning formulations to train DRL agents
to race at high speeds through four experiments,

1) Investigating the effect of maximum speeds ranging from
4 m/s to 8 m/s on performance.

2) Comparing the lap times and completion rates of agents
with a maximum speed of 6 m/s on training maps and
tracks unseen during training.

3) Comparing the trajectories, speed profiles and slip angles
of agents with a maximum speed of 6 m/s.

4) Comparing the TAL agent performance with a maximum
speed of 8 m/s, to the classical method and competitive
methods in the literature.

The agents are trained for 100,000 steps in the simulator
and tested by taking an average of 20 test laps. All learn-
ing experiments are repeated five times with unique random
seeds. All the code from the experiments is seeded and avail-
able in the associated repository: https://github.com/BDEvan5/
TrajectoryAidedLearning.

B. Maximum Speed Investigation

The first experiment investigates the effect of maximum
speed on agent performance by training agents with increasing
maximum speeds on the ESP map. Fig. 7 shows the aver-
age progress during training of the baseline and TAL agents.
The lines represent the average, and the shaded regions indicate
the minimums and maximums of the middle three repeats. The
baseline graph shows that for a maximum speed of 4 m/s, the
agent quickly learns to achieve average progress near 100%. As
the maximum speed increases, the average progress decreases.
At 8 m/s, the average progress remains below 25% for the
entirety of the training.

In Fig. 7, the TAL agent’s graph (right) shows that for all
the maximum speeds considered, the agent learns to achieve
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Fig. 8. Lap times and completion rate of trained baseline and TAL agents on
the ESP map.

Fig. 9. Episode rewards earned by training the baseline and TAL agents with
a maximum speed of 6 m/s on the AUT, ESP, GBR, and MCO maps.

over 75% average progress. The 6 m/s, 7 m/s and 8 m/s runs
achieved averages of 80%, 75%, 70% respectively. The TAL
agent’s higher average progress shows an advantage over the
baseline of travelling further without crashing.

The lap times and completion rates of the trained baseline
and TAL agents are plotted in Fig. 8. The TAL agent has faster
laps times for lower maximum speeds than the baseline. As
the maximum speed increases, the times even out and then the
baseline achieves faster lap times than the TAL agent.

In Fig. 8, the completion graph (right) shows that the baseline
agent completion rate starts at 100% for the 4 m/s and drops off to
50% for the 6 m/s and the 8 m/s agents do not complete any laps.
In contrast, the TAL agents all achieve higher completion rates,
with the 6 m/s agent achieving a 60% completion rate and the
8 m/s 40%. This is a similar result to the average progress shown
in Fig. 1 While the TAL agents also have lower completion rates
at higher speeds, the results indicate a significant improvement
over the baseline.

C. Quantitative Performance Evaluation - 6 m/s

The performance of the baseline and TAL agents is compared
using a maximum speed of 6 m/s, since the baseline performs
poorly at higher speeds.

Fig. 9 shows the episode rewards earned by the agents training
them on the AUT, ESP, GBR and MCO maps. The agents initially
earn close to zero reward since the crash quickly. The rewards
across maps in both graphs show a similar trend of the agents
achieving higher rewards on the longer ESP track (236.8 m),
intermediate rewards for the GBR and MCO tracks (202.2 m and
178.3 m) and lower rewards for the shorter AUT track (93.7 m).
The baseline reward signal provides larger rewards per episode
than the TAL agent due to the scaling used in the calculation.

Fig. 10. Average lap times and completion rates for the baseline, TAL and
classical planners with a maximum speed of 6 m/s.

Fig. 11. Lap times and completion rates for agents trained on the GBR map
and tested on the AUT, ESP, GBR, and MCO maps.

Fig. 10 shows the average lap times and completion rates
for the classical, baseline and TAL planners with a maximum
speed of 6 m/s. While the baseline agent achieves slightly
lower lap times than the TAL agent, the baseline agent has a
significantly lower completion rate. On the ESP, GBR and MCO
maps, the baseline agent completes less than 25% of the laps.
In contrast, the TAL agent completes over 75% of the laps on
all the tracks. This result demonstrates that the TAL formulation
results in agents achieving higher completion rates when using
a maximum speed of 6 m/s.

The generality of the learned policies is evaluated by testing
the agents trained on the GBR track on all the test tracks. Fig. 11
shows the lap times achieved by the baseline and TAL agents are
close together, with the baseline agent having a larger deviation
on the ESP and MCO tracks.

Fig. 11 shows that the TAL agent achieves significantly higher
completion rates than the baseline on all the tracks. The comple-
tion rates are all lower than when the agents were tested on the
training track (Fig. 10), indicating that while the policies learned
do generalise to other tracks, there is a performance drop in the
completion rate. The TAL agent achieving significantly higher
completion rates than the baseline agent, when tested on other
maps, indicates that the TAL performance improvement is robust
to different tracks.

D. Qualitative Trajectory Analysis - 6 m/s

We investigate the performance difference by comparing the
trajectories of the baseline and TAL agents.

Fig. 12 shows trajectories taken by the baseline, classic and
TAL agents for a portion of the ESP track with a maximum
speed of 6 m/s. The baseline trajectory is mainly orange in both
the straights and corners, indicating a near-constant speed of
around 6 m/s for most of the trajectory. In contrast, the classic
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Fig. 12. Trajectories taken by the baseline (left), classic (middle), and TAL
(right) planners on a portion of the ESP track.

Fig. 13. Speed and absolute slip angle for the baseline, TAL and classical
planners on a portion of the ESP map.

trajectory has green, yellow and orange components indicating
that the vehicle slows down in the corners and speeds up in the
straights. The TAL agent learns to select a similar speed profile
to the classic planner of speeding up and slowing down.

Fig. 13 plots the speed and slip profiles of the baseline, TAL
and classical planners for a portion of the ESP track. The speed
graph confirms that the baseline planner selects high speeds
near the maximum for most of the trajectory. The classical
planner smoothly slows down and speeds up, and the TAL agent
approximately tracks the classical planner.

The bottom graph in Fig. 13 shows the corresponding absolute
slip angles for the speed profiles. The slip angle is the angle
between the vehicle orientation and the direction of the veloc-
ity. The classical planner has the smallest slip angle, followed
by the TAL agent which reaches 10◦. The baseline agent has
a significantly larger slip angle, regularly exceeding 15◦ and
reaching over 30◦. This shows that the baseline agent relies
on the vehicle drifting for much of the track, thus exploiting
the simulation model. This behaviour has been seen in other
learning approaches [29], [30] and is responsible for causing
the low completion rates. Policies relying on high-slip angles
in the simulator are not feasible for physical implementation
since in reality tyre dynamics are non-linear and thus the policy
learned in simulation differs from how the real-world vehicles
perform.

E. Performance Comparison - 8 m/s

We compare the TAL agent with a classical planner using the
vehicle’s maximum speed of 8 m/s.

Fig. 14 shows the trajectories selected by the baseline, classic
and TAL planners. The baseline agent selects near the maximum
speed, resulting in the vehicle sliding and crashing early in the

Fig. 14. Trajectories taken by the baseline (left), classical (middle), and TAL
(right) agents on a portion of the ESP track.

Fig. 15. Speed profile of the classic planner and TAL agent using a maximum
speed of 8 m/s on a portion of the ESP track.

Fig. 16. Lap times comparing the TAL agent to the results presented by
Brunnbauer et al. [23] and Bosello et al. [9] for the four test tracks.

lap. Following the racing line, the classic planner smoothly
speeds up and slows down. The TAL agent shows a similar
pattern to the classic planner of speeding up in the straight
sections and slowing down around the corners.

Fig. 15 shows the speeds selected by the classical planner
and TAL agent when both use the maximum speed of 8 m/s.
The TAL agent roughly tracks the classical planner through
the whole segment, occasionally deviating by selecting higher
speeds or changing speed quickly. The similar speed profiles
show that the trajectory-aided learning formulation successfully
trains the DRL agent to select a speed profile similar to the
optimal trajectory. A persisting limitation is that the DRL agent’s
actions are less smooth than the classical planner.

Using the vehicle’s maximum speed of 8 m/s, we compare
the lap times from TAL agents to the classical planner and
similar methods from the literature. Fig. 16 shows the lap times
achieved by the TAL agent compared to a classical planner and
the results presented by Brunnbauer et al. [23] and Bosello et
al. [9]. The classical and TAL planners use a maximum speed
of 8 m/s, showing that a higher maximum speed allows them
to complete laps faster than previous methods. We, therefore,
conclude that our approach trains agents to select better speed
profiles, using higher maximum speeds and, therefore, better
suited to autonomous racing than previous approaches.
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V. CONCLUSION

This letter addressed the problem of training end-to-end DRL
agents for high-speed racing. We presented trajectory-aided
learning, which rewards the agent according to the difference
between the agent’s actions and those selected by a classical
planner following the optimal trajectory. The evaluation showed
that our proposed approach trains agents to race at high speeds
with significantly higher completion rates than the baseline
formulation. Further investigation into the speed profile showed
that this is due to the TAL agents selecting a better speed
profile of slowing down in the corners and speeding up in the
straights. The improved speed profile causes the TAL agents to
achieve a significantly higher completion rate on four test tracks.
Due to our approach using a higher maximum speed, the TAL
agents achieve faster lap times than comparable methods in the
literature.

The results in this letter demonstrate that incorporating clas-
sical components in the learning formulation improves the per-
formance of DRL agents. Using domain knowledge enables
DRL agents to achieve good results in high-performance control.
Future work should study how these improvements to racing
performance transfer to actual vehicles. TAL agents are expected
to transfer better to physical vehicles because they select appro-
priate speed profiles, thus having smaller slip angles. Another
extension of this work is using optimal trajectories in learning
formulations for other applications such as drone control.
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