
State Supervised Steering Function for Sampling-based
Kinodynamic Planning

Pranav Atreya

University of Texas at Austin

Austin, TX, United States

pranavatreya@utexas.edu

Joydeep Biswas

University of Texas at Austin

Austin, TX, United States

joydeepb@cs.utexas.edu

ABSTRACT
Sampling-based motion planners such as RRT* and BIT*, when

applied to kinodynamic motion planning, rely on steering func-

tions to generate time-optimal solutions connecting sampled states.

Implementing exact steering functions requires either analytical

solutions to the time-optimal control problem, or nonlinear pro-

gramming (NLP) solvers to solve the boundary value problem given

the system’s kinodynamic equations. Unfortunately, analytical solu-

tions are unavailable for many real-world domains, and NLP solvers

are prohibitively computationally expensive, hence fast and opti-

mal kinodynamic motion planning remains an open problem. We

provide a solution to this problem by introducing State Supervised

Steering Function (S3F), a novel approach to learn time-optimal

steering functions. S3F is able to produce near-optimal solutions

to the steering function orders of magnitude faster than its NLP

counterpart. Experiments conducted on three challenging robot

domains show that RRT* using S3F significantly outperforms state-

of-the-art planning approaches on both solution cost and runtime.

We further provide a proof of probabilistic completeness of RRT*

modified to use S3F.

KEYWORDS
Kinodynamic Motion Planning; Learning Steering Functions;

Sampling-based Planning

ACM Reference Format:
Pranav Atreya and Joydeep Biswas. 2022. State Supervised Steering Function

for Sampling-based Kinodynamic Planning. In Proc. of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION AND RELATEDWORK
This work tackles the kinodynamic motion planning (KDMP) prob-

lem, which is the problem of computing a kinodynamically feasible

motion plan that takes a robot from an initial configuration to a

goal region. We begin by formally defining the KDMP problem and

then survey the various approaches to solving it.

Let 𝑋𝐶 be the configuration space of the robot. The state space

𝑋 is defined as the Cartesian product of 𝑋𝐶 with 𝑋𝐷 , the set of

dynamics variables needed to fully describe the dynamics of the

robot at any given instance in time. 𝑋𝐷 typically consists of time

derivatives of elements of 𝑋𝐶 . Let 𝑈 be the control space of the

robot. The kinodynamic constraints are described by the differential

equation ¤𝑥 (𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡)), where 𝑥 (𝑡) ∈ 𝑋 and 𝑢 (𝑡) ∈ 𝑈 . The

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

KDMP problem differs from the purely kinematic motion planning

(KMP) problem in that the KMP problem operates only on the

configuration space𝑋𝐶 . Let𝑋obs
∈ 𝑋 be the set of obstacle-colliding

states and let 𝑋
free

= 𝑋\𝑋
obs

be the set of valid states. Let 𝑥init ∈
𝑋
free

be the initial state of the robot and let𝑋
goal
⊂ 𝑋

free
be the goal

region. The objective of the KDMP problem is to find a collision

free path that takes the robot from 𝑥init to 𝑋goal
while obeying the

kinodynamic constraints. The solution to the KDMP problem is

a mapping 𝑐 (𝑡) : [0, 𝑡𝑓] → 𝑈 from time to control inputs such

that applying 𝑐 (𝑡) starting from the state 𝑥init traces out a path

𝜉 (𝑡) : [0, 𝑡𝑓] → 𝑋
free

such that 𝜉 (𝑡𝑓) ∈ 𝑋
goal

. A motion plan is

considered optimal if it minimizes some cost function 𝐶 (𝑡𝑓 , 𝑐, 𝜉).
The time-optimal solution minimizes the total time 𝑡𝑓 .

We review the state of the art approaches to solving the KDMP

problem, including search-based planning, sampling-based plan-

ning, and learning-based solutions.

Search-based planning typically involves constructing a state

lattice 𝐺 = (𝑉 , 𝐸) where 𝑉 ⊂ 𝑋
free

and the edges 𝐸 are pre-defined

kinodynamically feasible motion primitives [23]. This lattice can

then be searched using any graph search algorithm to obtain a so-

lution. Increasing the resolution of the lattice increases the chances

that a solution can be found, but comes with an exponential in-

crease in computational cost. Finding a set of motion primitives

that work well can also be difficult. Search-based planning algo-

rithms are resolution optimal, in that they can find solutions that

are optimal with respect to the discretization used.

Sampling-based planning makes use of a continually improv-

ing discretization of the state space through random sampling. One

of the most effective sampling-based planning algorithms is the

Rapidly Exploring Random Tree (RRT) [17] algorithm. The RRT

algorithm works by incrementally sampling the state space and ex-

tending the nearest vertex in the tree towards that sample. Because

this extension can be made by a random propagation of controls,

the RRT algorithm can be applied to kinodynamic systems.

RRTs have also been integratedwithmachine learning approaches

to solve the KDMP problem. One such work employs the k-nearest-

neighbors algorithm within the RRT framework to approximate the

cost-to-go function and expand vertices in the tree [29]. It however

suffers from lack of optimality of computed trajectories and is only

demonstrated to work for simple environments. Reinforcement

Learning RRT (RL-RRT) [6] trains an RL agent to do local planning

and uses an RRT to guide exploration. The resulting motion plan is

suboptimal and since the RL local planner is trained on particular

obstacle configurations, may not generalize well to new obstacle

environments. Probabilistic Roadmap RL (PRM-RL) [8] also uses RL

for local planning but maps sensor observations directly to actions

and does not attempt to produce optimal trajectories.

RRT and the aforementioned RRT based algorithms do not pro-

duce optimal solutions. An alternative algorithm that produces

optimal solutions while maintaining the computational efficiency

of RRT is the RRT* algorithm [14]. The RRT* algorithm makes use

of a rewiring step to ensure that the path from the root to any

vertex in the tree is optimal with respect to the connections in the

tree. Because of this, the RRT* algorithm is asymptotically optimal.

Many variants of the RRT* algorithm exist that have proven to

work well in practice. Informed RRT* [9] improves on RRT* by

ensuring that after an initial solution has been found, only states

that have the potential to improve the solution are considered as

candidate vertices. The BIT* algorithm [10] integrates graph-based

and sampling-based planning techniques to more efficiently find

and improve on solutions to the planning problem.

One caveat of optimal sampling-based algorithms including RRT*

and BIT* is that they all require an optimal steering function to

connect states. For any two states 𝑥𝑎, 𝑥𝑏 ∈ 𝑋 , a steering function
𝑆 (𝑥𝑎, 𝑥𝑏) produces a trajectory 𝑇 : [0, 𝑡𝑓] → 𝑈 , a mapping from

time to control inputs. Integrating𝑇 from 𝑥𝑎 according to the equa-

tion of motion 𝑓 produces a path Γ : [0, 𝑡𝑓] → 𝑋 , a mapping from

time to states. An optimal steering function 𝑆∗ (𝑥𝑎, 𝑥𝑏) produces
a trajectory 𝑇 ∗ : [0, 𝑡𝑓] → 𝑈 and a path Γ∗ : [0, 𝑡𝑓] → 𝑋 that

in addition to satisfying the aforementioned constraints, satisfies

Γ∗ (𝑡𝑓) = 𝑥𝑏 and minimizes some cost function, most commonly

time. There exist algorithms like Stable-Sparse RRT (SST) [19] and

Asymptotically Optimal RRT (AO-RRT) [12] that do not require

a steering function, but in practice they tend to take a significant

amount of time to find good quality solutions. Analytical solutions

to the steering function exist for some robots, such as those with lin-

ear dynamics [28], and so do iterative solutions for specific systems

such as omnidirectional robots with bounded acceleration [2], but

for most systems computing the optimal steering function requires

a call to a computationally expensive nonlinear programming (NLP)

solver. There are ways to decrease the computational overhead of

NLP solvers to make planning tractable [30], but the NLP solver

still remains a significant bottleneck. Previous work has explored

whether the steering function can be learned [32]. The learning

setup used however was unable to connect arbitrary start and goal

states, a necessity if the steering function is to be used in an optimal

sampling-based planning algorithm.

Reinforcement learning has also been applied to the KDMP

problem. One approach to KDMP for linear systems uses continuous-

time Q-learning [16] to deal with dynamics whose differential equa-

tions of motion are inaccurate or unreliable. Some have also pro-

posed formulating the KDMP problem entirely as a Markov Deci-

sion Process (MDP), where the solution KDMP policy is learned by

RL [5].

Learning optimal control policies is a research area that has

also been recently explored. Past works [11] [27] [25] [26] have

attempted to train a neural network to learn to produce optimal

controls. All of these works however keep the goal state fixed, and

so a new policy would need to be learned for every goal state.

Optimization-based planning methods rely on numerical

optimization to find a solution to the goal that minimizes some

cost objective. Example works that fall under this category in-

clude GuSTO [4], CHOMP [24], and STOMP [13]. While such

optimization-based methods are effective at finding solutions given

good initialization, they find difficulty in handling cases where

initial solutions are unknown, or when the optimization objective

function has local minima (often due to obstacles).

Integrated planning and learning approaches have recieved

significant attention lately. Search on the Replay Buffer (SoRB) [7]

demonstrates how the success rate of goal-conditioned RL on long

horizon tasks can be improved by adding a planning component.

SoRB however is unable to provide theoretical guarantees on com-

pleteness and faces difficulty when run on unseen environments.

One approach [1] uses precomputation and machine learning to

enable real-time kinodynamic planning for quadrotors. It is able

to avoid solving two-point boundary value problems directly on

quadrotor dynamics by using minimum snap polynomial splines,

a technique that only works for a limited class of systems. Model-

Predictive Motion Planning Networks (MPC-MPNet) [18] proposes

the integration of multiple neural components along with Model

Predictive Control to solve the kinodynamic motion planning prob-

lem. The algorithm is compared with SST and is shown to have

faster planning times. It however is unable to produce lower cost

paths than SST and drops in performance on unseen environments.

While many approaches exist for kinodynamic planning, none so

far are able to find low cost solutions in a computationally efficient

manner. Approaches either sacrifice low solution cost or perfor-

mance in pursuit of the other. We propose with this work that both

are attainable. In contrast to many learning approaches, our work

is also agnostic to obstacle configurations, and so generalizes well

to new environments.

In summary, in this paper we contribute: 1) State Supervised

Steering Function (S3F), a learning-based technique to efficiently

compute the steering function required by optimal sampling-based

planners; 2) S3F-RRT*, a probabilistically complete RRT* algorithm

that uses S3F as its steering function; and 3) Empirical results for

three kinodynamically-complex robots that demonstrate that S3F-

RRT* outperforms state-of-the-art kinodynamic planners.

2 KINODYNAMIC PLANNINGWITH STATE
SUPERVISED STEERING FUNCTION

Recall from earlier that given two arbitrary states 𝑥𝑎, 𝑥𝑏 ∈ 𝑋 the

optimal steering function 𝑆∗ (𝑥𝑎, 𝑥𝑏) produces a trajectory 𝑇 ∗ that
optimally connects these two states. We are interested in learning

a function 𝑆 that approximates 𝑆∗ such that 𝑆 (𝑥𝑎, 𝑥𝑏) produces a
near-optimal trajectory 𝑇 ≃ 𝑇 ∗. The control trajectory 𝑇 can be

integrated to obtain a path Γ̃.

2.1 Steering Function Formulation
Rather than learning 𝑆 that produces 𝑇 directly, we simplify the

learning problem by constructing 𝑇 in an iterative manner. This

can be done by learning a policy 𝜋 : 𝑋 × 𝑋 → 𝑈 where 𝜋 takes

as input the current state of the robot 𝑥𝑡 and the goal state 𝑥𝑏 and

produces as output a constant-time control input 𝑢 to be executed

for a fixed period of time 𝜏 , resulting in a new state 𝑥𝑡+1. Iteratively
calling 𝜋 for a fixed number of iterations 𝑛 results in the genera-

tion of a piecewise constant control function that we denote 𝑇max.

Integrating 𝑇max from the start state 𝑥𝑎 yields the state function

Γmax.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

2

3

4

5

6

7

8

9

10

c
o
n
t
r
o
l
(
N
)

thrust1

thrust2

thrust3

thrust4

(a) Control function

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time (s)

−4

−3

−2

−1

0

1

2

3

s
t
a
t
e
(
m
,
m
/
s
,
r
a
d
,
r
a
d
/
s
)

x

y

z

xdot

ydot

zdot

theta

phi

gamma

thetadot

phidot

gammadot

(b) State function

Figure 1: Quadrotor optimal control and state functions

𝑇 can be obtained from𝑇max by discarding from𝑇max all controls

past the time when the robot has reached the goal. To be able to

do this, 𝑛𝜏 , the duration of 𝑇max, needs to be greater than the time

it takes to connect any two states in 𝑋 optimally. The next step

is to determine when 𝑇max actually reaches the goal. The naive

approach is to simply select the time at which Γmax is closest to 𝑥𝑏
where closeness is defined using Euclidean distance. The problem

with this approach is that our trajectories not only need to reach

the goal but also be optimal with respect to the time to goal. Let’s

say for one particular trajectory the robot reaches a distance 𝑑1
from the goal at time 𝑡1 and a distance 𝑑2 from the goal at time

𝑡2. If 𝑑2 is the closest distance, then we are guaranteed to pick 𝑡2
as our ending time, even if 𝑑2 is marginally less than 𝑑1. However

it may be possible that 𝑡2 is significantly greater than 𝑡1, and so

just to reach a little closer to the goal we’re sacrificing significant

time optimality. This type of analysis motivates the solution to

this problem. Since there are in essence two objectives that we are

optimizing over when selecting the end time – distance to goal and

time to reach goal – we should construct a reward function that

fairly takes into account both. The following reward function 𝑅(𝑡)
does exactly this:

𝑅(𝑡) = 𝛼
| |𝑥𝑎 − 𝑥𝑏 | | − | |Γmax (𝑡) − 𝑥𝑏 | |

| |𝑥𝑎 − 𝑥𝑏 | |
− 𝑡 + 𝑅𝑏 (Γmax (𝑡), 𝑥𝑏)

𝑅𝑏 (Γmax (𝑡), 𝑥𝑏) =
{
𝛽 , if | |Γmax (𝑡) − 𝑥𝑏 | | ≤ 𝜇

0, otherwise

(1)

The first term is a normalized difference of potential functions, and

is maximized when the candidate terminal state is situated at the

goal. The use of such potential functions was first introduced as a

policy invariant mechanism for reward shaping [21]. The second

term, −𝑡 , takes into account the second objective: minimizing the

time to the goal. Finally the third term provides an additional incen-

tive if the candidate terminal state is very close (≤ 𝜇 distance away)

to the goal. The hyperparameters 𝛼 , 𝛽 , and 𝜇 are positive constants

which can be tuned to adjust the relative weights of the three terms.

For all time points which this reward function is calculated, the

end time will be the time with the greatest reward. 𝑇 can then be

obtained by discarding all control inputs in 𝑇max after the end time.

2.2 Learning the Policy
The previous section showed how the steering function 𝑆 can be

constructed from a learned policy 𝜋 . We next present how 𝜋 is

learned.

We employ a supervised learning approach to learn 𝜋 . Since

the end goal is to learn the optimal steering function, our dataset

consists of solutions to the optimal steering function for a large

number of start and goal states. This dataset, generated by an NLP

solver, consists of a series of trajectories each described by a tuple

(𝑇 ∗, Γ∗, 𝑡𝑓). Here 𝑇 ∗ : [0, 𝑡𝑓] → 𝑈 and Γ∗ : [0, 𝑡𝑓] → 𝑋 are

the control and state functions introduced earlier. We used the

PSOPT [3] optimal control library to generate the trajectories. The

start and goal states for each trajectory in the dataset are sampled

uniformly at random from the full state space to ensure good state

space coverage.

To learn 𝜋 using this dataset we employ the fact that 𝜋 is used to

generate control and state functions𝑇 and Γ̃. The arguably simplest

approach is to have 𝑇 imitate 𝑇 ∗ for each start and goal pair in

the dataset. The discrepancy in the fact that 𝑇 is piecewise con-

stant whereas 𝑇 ∗ is continuous can be accounted for by simply

averaging controls in 𝑇 ∗ at each length 𝜏 time interval. 𝜋 would

then be directly supervised by the averaged constant controls in

𝑇 ∗. Although straightforward, this approach fails to learn a well-

performing policy. The primary reason for this is that the learning

problem involves the approximation of a highly discontinuous func-

tion. 𝜋 is tasked with learning the optimal control function which

for many kinodynamic systems is a bang-bang control function.

Figure 1a shows an example of this for the quadrotor robot – such

discontinuous control functions are hard to represent and learn

directly, even by supervised learning.

The solution to this problem is to not use the optimal control

function𝑇 ∗ to supervise the learning, but to instead use the optimal

S3F-RRT*()
1: 𝑉 ← {𝑥init}, 𝐸 ← ∅
2: for 𝑖 = 1..𝑛 do
3: 𝑥

rand
← SampleFree()

4: 𝑥parent ← ∅, 𝑥ext ← ∅, 𝑐min ←∞
5: 𝑋near ← NearTo(𝐺 = (𝑉 , 𝐸), 𝑥

rand
)

6: for each 𝑥 ∈ 𝑋near do
7: 𝑇 ← Steer(𝑥, 𝑥

rand
)

8: 𝑥new ← EndState(𝑥,𝑇)
9: 𝑐traj ← SteeringCost(𝑇)
10: 𝑏 ← Dist(𝑥new, 𝑥rand) < 𝑟error∧ObstacleFree(𝑥,𝑇)
11: if Cost(𝑥) + 𝑐traj < 𝑐min ∧ 𝑏 then
12: 𝑥parent ← 𝑥

13: 𝑥ext ← 𝑥new
14: 𝑐min ← Cost(𝑥) + 𝑐traj
15: end if
16: end for
17: if 𝑐min ≠ ∞ then
18: 𝑉 ← 𝑉 ∪ {𝑥ext}
19: 𝐸 ← 𝐸 ∪ {(𝑥parent, 𝑥ext)}
20: end if
21: Rewire(𝑉 , 𝐸, 𝑥ext)
22: end for
23: return 𝐺 = (𝑉 , 𝐸)

Rewire(𝑉 , 𝐸, 𝑥ext)
1: 𝑋near ← NearFrom(𝐺 = (𝑉 , 𝐸), 𝑥ext)
2: for each 𝑥 ∈ 𝑋near do
3: 𝑇 ← Steer(𝑥ext, 𝑥)
4: 𝑥new ← EndState(𝑥ext,𝑇)
5: 𝑐traj ← SteeringCost(𝑇)
6: 𝑏 ← Dist(𝑥new, 𝑥) < 𝑟error ∧ ObstacleFree(𝑥ext,𝑇)
7: if Cost(𝑥ext) + 𝑐traj < Cost(𝑥) ∧ 𝑏 then
8: 𝑉 ← 𝑉 \{𝑥} ∪ {𝑥new}
9: 𝐸 ← 𝐸\{(Parent(𝑥), 𝑥)} ∪ {(𝑥ext, 𝑥new)}
10: PropagateRewiring(𝑥, 𝑥new)
11: end if
12: end for

PropagateRewiring(𝑥 , 𝑥new)
1: for each 𝑥

child
∈ Children(𝑥) do

2: 𝑇 ← Trajectories(𝑥, 𝑥
child

)
3: if ObstacleFree(𝑥new,𝑇) then
4: 𝑥next ← EndState(𝑥new,𝑇)
5: 𝑉 ← 𝑉 \{𝑥

child
} ∪ {𝑥next}

6: 𝐸 ← 𝐸\{(𝑥, 𝑥
child
)} ∪ {(𝑥new, 𝑥next)}

7: PropagateRewiring(𝑥
child

, 𝑥next)
8: else
9: DeleteSubtree(𝑥

child
)

10: end if
11: end for

Figure 2: S3F-RRT* Algorithm

state function Γ∗. We term this approach State Supervised Steer-

ing Function (S3F). Due to the differential equation 𝑓 that defines

the kinodynamic constraints, state functions are guaranteed to be

differentiable (and thus continuous), making learning the optimal

state function a feasible problem. Figure 1b shows an example of

such a state function for the quadrotor robot – note that despite

the associated control function (Figure 1a) being discontinuous,

the state function is smooth and continuous. The goal now is to

have Γ̃ imitate Γ∗ for each trajectory in the dataset. This can be

done by ensuring that for various time points 𝑡 in the range [0, 𝑡𝑓],
Γ̃(𝑡) = Γ∗ (𝑡). Recall that Γ̃ is only obtained by integrating 𝑇 . This

can be accounted for with the following procedure: sample a series

of time points (𝑡0 ...𝑡𝑘) in the range [0, 𝑡𝑓 −𝜏]. For each time point 𝑡 ,

assume that the robot is currently at Γ∗ (𝑡). If Γ̃ is to imitate Γ∗, the
robot should be at Γ∗ (𝑡 + 𝜏) at time 𝑡 + 𝜏 . The actual location of the

robot at this time under the current policy 𝜋 can be calculated by

evaluating 𝐹 (Γ∗ (𝑡), 𝜋 (Γ∗ (𝑡), 𝑥𝑡𝑓)) where 𝑥𝑡𝑓 is the goal state of the

trajectory and 𝐹 : 𝑋 ×𝑈 → 𝑋 is an integration function that given

a current state and a constant control, integrates the differential

equation of motion 𝑓 to compute the state 𝜏 units of time later. To

get Γ̃ to imitate Γ∗ we can thus optimize the following learning

objective:

argmin

𝜃

∑︁
Γ∗∈𝐷

∑︁
𝑡 ∈(𝑡0,...,𝑡𝑘)

[𝐹 (Γ∗ (𝑡), 𝜋 (Γ∗ (𝑡), 𝑥𝑡𝑓)) − Γ∗ (𝑡 + 𝜏)]2 (2)

where 𝜃 is the parameter set of 𝜋 and 𝐷 is the dataset of optimal

trajectories. The key takeaway from this learning procedure is that

we are learning 𝜋 indirectly. 𝜋 is a component of a state function

that we are training to be optimal, and by learning this state function

we are indirectly learning the control function 𝜋 .

2.3 Sampling-based Planning With Learned
Steering Functions: S3F-RRT*

We present S3F-RRT*, a sampling-based planning algorithm that

uses the learned steering function to solve the optimal kinodynamic

motion planning problem. S3F-RRT* uses S3F as the steering func-

tion, and employs a modified rewiring procedure to overcome any

potential local inaccuracies in S3F’s trajectories.

Figure 2 presents the algorithmic formulation of S3F-RRT*. Fig-

ure 3 shows a visualization of what goes on in each S3F-RRT*

iteration. Each iteration begins by sampling a random collision-free

state 𝑥
rand

. The NearTo function is then called to obtain the set of

all vertices in the current RRT* tree that are near 𝑥
rand

. A state is

considered to be near 𝑥
rand

if the time of the optimal trajectory from

that state to 𝑥
rand

is below some threshold. Each state in 𝑋near is

then evaluated as a possible parent to 𝑥
rand

. Steer(𝑥, 𝑥
rand
) invokes

S3F to compute a control function 𝑇 that connects 𝑥 to 𝑥
rand

. To

determine 𝑥new, where the trajectory actually ends, EndState(𝑥,𝑇)
integrates 𝑇 from 𝑥 . SteeringCost(𝑇) returns the cost of the tra-
jectory 𝑇 , which for a time-optimal planning problem is simply

the duration of 𝑇 . Cost(𝑥) returns the cost of going from the start

state to 𝑥 in the current RRT* tree. The Dist function returns the

Euclidean distance between two states and is used to ensure that the

terminal state of the trajectory is close enough to the target state.

ObstacleFree(𝑥,𝑇) integrates the control function𝑇 beginning at

𝑥 to obtain a state function that maps time to states. ObstacleFree

Figure 3: Illustration of the steps that take place in one iteration of S3F-RRT*

then ensures that every state in this state function does not collide

with obstacles.

After the best parent has been found and the state has been added

to the tree, the rewiring procedure is invoked. Here, the set 𝑋near is

constructed by calling NearFrom(𝐺 = (𝑉 , 𝐸), 𝑥ext). The difference
between NearFrom and NearTo is that NearFrom(𝐺 = (𝑉 , 𝐸), 𝑥ext)
considers connections from 𝑥ext to other states as opposed to from

other states. Parent(𝑥) returns the parent of 𝑥 in the current RRT*

tree.

The rewiring procedure internally calls PropagateRewiring.
Children(𝑥) returns the set of all children states to 𝑥 in the current

RRT* tree. Trajectories(𝑥, 𝑥
child
) returns the control function

that was computed earlier by S3F to connect 𝑥 and 𝑥
child

.

One of the key differences between this algorithm and the origi-

nal RRT* algorithm is the absence in this algorithmic formulation

of finding the nearest state. In the original RRT* algorithm, after a

state is randomly sampled, the nearest state in the tree is selected

as a source of expansion. A new state is obtained by extending the

nearest state towards the randomly sampled state up to a distance

𝜂, and the resultant state is used as the target for the subsequent

steering function evaluations. We entirely eliminate this compo-

nent of the algorithm for simplicity, a modification that was first

proposed in Kinodynamic RRT* [28]. This modification is known to

not hurt theoretical asymptotic optimality of the RRT* algorithm.

The main other difference in this algorithm is a series of modifica-

tions that deal with the fact that the learned steering function will

reach within an error radius of the goal state. Notable among these

is the existence of the PropagateRewiring procedure.

2.4 Correctness of S3F-RRT*
There are two criteria for correctness: solutions returned by S3F-

RRT* must satisfy the kinodynamic constraints and must avoid

obstacles. Any operation on the S3F-RRT* tree (such as rewiring)

can be reformulated as a sequence of state addition and state dele-

tion operations. State deletion by default cannot violate correctness.

State addition also satisfies correctness because (1) a state is only

added to the tree if the path from the parent to the state is collision

free and (2) the path from the parent to the state is generated by

integrating the differential equation of motion, implying that the

path to the state satisfies kinodynamic constraints. Thus S3F-RRT*

is correct.

2.5 Probabilistic Completeness Proof of
S3F-RRT*

Here we present a summary of the proof of probabilistic complete-

ness (PC) of the S3F-RRT* algorithm. S3F-RRT* is a modification of

the original RRT* algorithm [14] designed to make use of a learned

steering function. The proof largely follows the structure of the

proof of probabilistic completeness of geometric RRT [15], though

significant modifications have been made to take into account the

presence of kinodynamic constraints and the use of a learned steer-

ing function. The full proof can be found in the supplementary

materials.

Let 𝑐∗ (𝑥𝑎, 𝑥𝑏) denote the cost of the optimal trajectory from 𝑥𝑎
to 𝑥𝑏 , or equivalently the kinodynamic distance from 𝑥𝑎 to 𝑥𝑏 . We

assume that 𝑐∗ obeys the triangle inequality, that is, 𝑐∗ (𝑥𝑎, 𝑥𝑏) ≤
𝑐∗ (𝑥𝑎, 𝑥) + 𝑐∗ (𝑥, 𝑥𝑏) for all 𝑥 ∈ 𝑋 . Let 𝑆 be a learned steering func-

tion. We assume that with nonzero probability 𝑝 , 𝑆 (𝑥𝑎, 𝑥𝑏) yields
a state function Γ̃ that satisfies 𝑐∗ (Γ̃(𝑡), 𝑥𝑏) ≤ 𝑐∗ (𝑥𝑎, 𝑥𝑏) for all
𝑡 ∈ [0, 𝑡𝑓]. This assumption in essence states that every state along

the path produced by 𝑆 is kinodynamically closer to the goal state

than the start state is. For a steering function trained to be optimal,

this is a reasonable assumption.

We will use 𝐵𝑟 (𝑥) to denote the subset of the state space 𝑋

defined by {𝑥 ′ |𝑐∗ (𝑥 ′, 𝑥) ≤ 𝑟 }. For simplicity, we assume that there

exist 𝛿
goal

> 0, 𝑥
goal
∈ 𝑋

goal
such that 𝐵𝛿

goal

(𝑥
goal
) ⊆ 𝑋

goal
. We

denote this simplified goal region 𝐵𝛿
goal

(𝑥
goal
) as 𝑋 ∗

goal
. The goal of

the motion planning problem is to find a kinodynamically feasible

path 𝜋 : [0, 𝑡𝜋] → 𝑋
free

such that 𝜋 (0) = 𝑥init and 𝜋 (𝑡𝜋) ∈ 𝑋 ∗
goal

.

The clearance of 𝜋 is the maximal 𝛿
clear

such that 𝐵𝛿
clear

(𝜋 (𝑡)) ∈
𝑋
free

for all 𝑡 ∈ [0, 𝑡𝜋].
We assume for this proof that there exists a valid trajectory

𝜋 : [0, 𝑡𝜋] → 𝑋
free

with clearance 𝛿
clear

> 0. Without loss of

generality, assume that 𝜋 (𝑡𝜋) = 𝑥
goal

, i.e., the trajectory terminates

at the center of the goal region. Let 𝐿 be the total cost of 𝜋 , and

let 𝑣 = 𝑚𝑖𝑛(𝛿
clear

, 𝛿
goal
). Let 𝑚 = 3𝐿

𝑣 . Define a sequence of 𝑚 +
1 points 𝑥0 = 𝑥init, ..., 𝑥𝑚 = 𝑥

goal
along 𝜋 such that the cost of

traversal from one point to the next is
𝑣
3
. Therefore, 𝑐∗ (𝑥𝑖 , 𝑥𝑖+1) ≤ 𝑣

3

for every 0 ≤ 𝑖 < 𝑚. We will now prove that as the number of

iterations increases, the S3F-RRT* algorithm will generate a path

passing through the vicinity of these𝑚 + 1 points with probability

asymptotically approaching one.

(a) Dubin’s Car with Acceleration (b) Tractor Trailer (c) Quadrotor

Figure 4: Sample planning trees after running S3F-RRT* on the three robot domains. The best solution found from the (green)
start state to the (red) goal state is shown explicitly. A large spacing between consecutive gray states indicates a high velocity.
In the planning trees, the dots are the vertices of the tree and the orange connections are the edges. In (c), dark gray states are
of low elevation and light gray states are of high elevation.

Lemma 2.1. Suppose that S3F-RRT* has reached 𝐵 𝑣
3

(𝑥𝑖), that is, its
tree contains a vertex 𝑥 ′

𝑖
such that 𝑥 ′

𝑖
∈ 𝐵 𝑣

3

(𝑥𝑖). If 𝑥rand ∈ 𝐵 𝑣
3

(𝑥𝑖+1)
and 𝑐∗ (𝑥𝑖 , 𝑥rand) ≤ 𝑣

3
(equivalently 𝑥𝑖 ∈ 𝐵 𝑣

3

(𝑥
rand
)), then the path

from the nearest neighbor 𝑥near to 𝑥rand lies entirely in 𝑋
free

with
probability 𝑝 .

Proof. See supplementary materials. □

Theorem 2.2. The probability that S3F-RRT* fails to reach 𝑋 ∗
goal

from 𝑥init after 𝑘 iterations is at most 𝑎𝑒−𝑏𝑘 , for some constants
𝑎, 𝑏 ∈ R>0.

Proof. See supplementary materials for full proof of Theorem

2.2. Here we present an overview. Assume that 𝐵 𝑣
3

(𝑥𝑖) already
contains an S3F-RRT* vertex. Let 𝑟𝑖 be the probability that in the

next iteration a S3F-RRT* vertex will be added to 𝐵 𝑣
3

(𝑥𝑖+1). The
proof in essence relies on the fact that with Lemma 2.1 in place, it

can be shown that the probability 𝑟𝑖 is nonzero and is independent

of the number of S3F-RRT* iterations 𝑘 . In order for the S3F-RRT*

algorithm to reach𝑋 ∗
goal

from𝑥init, a S3F-RRT* vertexmust be added

to 𝐵 𝑣
3

(𝑥𝑖+1) 𝑚 times for 0 ≤ 𝑖 < 𝑚. If we let 𝑟 be the minimum of

the transition probabilities {𝑟𝑖 |∀𝑖 (0 ≤ 𝑖 < 𝑚)}, reaching the goal

can be described as 𝑘 Bernoulli trials with success probability 𝑟 ,

where the goal is reached after𝑚 successful outcomes. With this

formulation it can be shown that the probability the goal is not

reached decays to zero exponentially with 𝑘 , and thus S3F-RRT* is

probabilistically complete. □

3 EXPERIMENTAL RESULTS
We compared S3F to the current state of the art on three challenging

problem spaces: Dubin’s car with acceleration, tractor trailer, and

quadrotor robots. For each problem space, we solve a series of

minimum-time motion planning problems using S3F-RRT*, RRT*

using NLP for steering, RRT, and SST. The BARN dataset [22] was

used to obtain realistic, obstacle dense maps to run the comparisons

on. Figure 4 depicts sample solutions and their planning trees found

by S3F-RRT* on the three problem spaces.

3.1 Robot Kinodynamics
The three robot models used in this paper are the Dubin’s car with

acceleration, tractor trailer, and quadrotor robots. Here we intro-

duce these robot domains in more detail along with their equations

of motion.

Dubin’s Car with Acceleration: 𝑋 = [𝑥,𝑦, 𝜃, 𝑣],𝑈 = [𝑎, 𝑘]

¤𝑥 = 𝑣 cos(𝜃) ¤𝑦 = 𝑣 sin(𝜃)
¤𝜃 = 𝑣𝑘 ¤𝑣 = 𝑎

(3)

The Dubin’s car with acceleration is a curvature constrained robot

car. 𝑥 , 𝑦, 𝜃 , and 𝑣 are the 𝑥-position, 𝑦-position, orientation, and

velocity of the car, and 𝑎 and 𝑘 are the acceleration and curvature

control inputs. The motion of the car is subject to the curvature

constraint |𝑘 | ≤ | 1

𝑟min

| where 𝑟min is the minimum radius of turning.

Tractor Trailer: 𝑋 = [𝑥,𝑦, 𝜃, 𝑣, 𝛼],𝑈 = [𝑎, 𝜙]

¤𝑥 = 𝑣 cos(𝜃) ¤𝑣 = 𝑎

¤𝑦 = 𝑣 sin(𝜃) ¤𝛼 = (𝑣
𝐷
) sin(𝜃 − 𝛼)

¤𝜃 = (𝑣
𝐿
) tan(𝜙)

(4)

The tractor trailer robot consists of a four wheeled robot car pulling

a two wheeled trailer. The robot car in isolation has the same dy-

namics as the Dubin’s car with acceleration. 𝑥 , 𝑦, 𝜃 , 𝑣 , and 𝛼 are

the 𝑥-position, 𝑦-position, orientation, of the car, velocity of the

car, and orientation of the trailer, respectively. The control inputs

are 𝑎 and 𝜙 which represent the acceleration and heading. 𝐿 is the

distance between the front and rear axles of the robot car, and 𝐷 is

the length of the rod connecting the trailer with the car.

Quadrotor: 𝑋 = [𝑥,𝑦, 𝑧, ¤𝑥, ¤𝑦, ¤𝑧, 𝜃, 𝜙,𝛾, ¤𝜃, ¤𝜙, ¤𝛾],𝑈 = [𝜏1, 𝜏2, 𝜏3, 𝜏4]

0.0 0.2 0.4 0.6 0.8 1.0

Distance Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
l
a
t
i
v
e
F
r
a
c
t
i
o
n

Dubin’s w/ A

Tractor Trailer

Quadrotor

(a) Distance to goal CDFs

1.0 1.5 2.0 2.5 3.0 3.5

Solution Cost Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
l
a
t
i
v
e
F
r
a
c
t
i
o
n

Dubin’s w/ A

Tractor Trailer

Quadrotor

(b) Cost ratio CDFs

Figure 5: CDFs of (a) the distance remaining to the goal for the three robot domains and (b) the ratios of costs of S3F’s solutions
over NLP’s solutions for the three robot domains. Plots depict 1500 data points.

¥𝑥 =
1

𝑤
(cos𝜃 sin𝜙 cos𝛾 + sin𝜃 sin𝛾) (𝜏1 + 𝜏2 + 𝜏3 + 𝜏4)

¥𝑦 =
1

𝑤
(cos𝜃 sin𝜙 sin𝛾 − sin𝜃 cos𝛾) (𝜏1 + 𝜏2 + 𝜏3 + 𝜏4)

¥𝑧 =
1

𝑤
(cos𝜃 cos𝜙) (𝜏1 + 𝜏2 + 𝜏3 + 𝜏4)

¥𝜃 =
𝐿(𝜏1 − 𝜏3) − 2𝑤𝐿2 ¤𝜙 ¤𝛾

2𝑤𝑟2/5 + 2𝑤𝐿2

¥𝜙 =
𝐿(𝜏2 − 𝜏4) + 2𝑤𝐿2 ¤𝜃 ¤𝛾

2𝑤𝑟2/5 + 2𝑤𝐿2

¥𝛾 =
𝑏 (𝜏1 − 𝜏2 + 𝜏3 − 𝜏4)
2𝑤𝑟2/5 + 4𝑤𝐿2

(5)

The quadrotor is a lightweight, agile robot heavily used in research

and industrial applications. 𝑥 , 𝑦, and 𝑧 represent the Cartesian

coordinates of the quadrotor. 𝜃 , 𝜙 , and 𝛾 represent the pitch, roll,

and yaw, respectively. 𝑤 is the weight of the quadrotor, 𝐿 is the

length of an arm, 𝑟 is the radius of the sphere representing the

center blob of the quadrotor, 𝑔 is the gravitational acceleration, and

𝑏 is a constant. 𝜏1 through 𝜏4 represent the thrusts generated by

each of the four motors and are the control inputs for the quadrotor.

3.2 S3F Evaluation
We evaluate the learned steering function for each of the three

problem spaces on its ability to consistently reach the goal and on

the time optimality of its solutions.

Wemeasured the former by computing for 1500 steering function

queries how much of the initial distance between the start and goal

states was not traversed in the produced trajectory. Mathematically

this is expressed by

𝑑𝑓

𝑑𝑠
where 𝑑𝑠 is the distance from the start to

the goal and 𝑑𝑓 is the distance from the end state of the trajectory

produced by S3F to the goal. A value of 0 indicates that the goal

is reached exactly. Figure 5a depicts the cumulative distribution

function (CDF) plot of 1500 evaluations of this expression. To list

a few numbers, we see that for the Dubin’s car with acceleration

problem space, 85% of the trajectories are within 10% of 𝑑𝑠 to the

goal; for the tractor trailer problem space, 75% of the trajectories

are within 10% of 𝑑𝑠 to the goal; and for the quadrotor problem

space, 85% of the trajectories are within 10% of 𝑑𝑠 to the goal. These

results indicate that on average, S3F is able to reach very close to

the desired goal.

Measuring the quality of the solutions produced by S3F in terms

of time optimality can easily be done by comparing S3F’s trajectory

costs with the optimal costs as determined by the NLP solver. Figure

5b shows the CDF plots of the ratios of the cost of solutions of

trajectories produced by S3Fwith the cost of solutions of trajectories

produced by the NLP solver. An ideal value of the ratio is close to

1. Results are depicted for 1500 trajectories. We can see that for

all three problem spaces the trajectories are very close to optimal.

Specifically, for the Dubin’s car with acceleration problem space,

90% of S3F’s trajectories have costs that are less than 1.25 times as

suboptimal as the optimal cost; for the tractor trailer problem space,

90% of S3F’s trajectories have costs that are less than 1.25 times

as suboptimal as the optimal cost; and for the quadrotor problem

space, 80% of S3F’s trajectories have costs that are less than 1.25

times as suboptimal as the optimal cost.

3.3 Planning Comparisons
Here we compare planning using the S3F-RRT* algorithm against

RRT* with NLP steering, RRT, and SST. By comparing against

SST, we can omit a comparison against AO-RRT since previous

work [20][31] has shown that empirically SST outperforms AO-

RRT. Comparisons are done on all three problem spaces. Starting

and ending points for each planning query are sampled randomly

across five different maps.

Figures 6a, 6b, and 6c plot the average cost of best solution found

by each of the algorithms against wall-clock time for the different

robot domains. Results of 25 planning problems are depicted in each

plot. In many cases, it takes the algorithms quite a long time to find

their first solution. This causes the graphs to not be monotonically

0 50 100 150 200 250 300

Planning Time (s)

4

6

8

10

12

14

C
o
s
t
o
f
b
e
s
t
s
o
l
u
t
i
o
n
(
s
)

RRT* w/ NLP Steering

RRT* w/ S3F Steering

Kinodynamic RRT

SST

(a) Dubin’s Car with Acceleration average solution cost vs runtime

0 50 100 150 200 250 300

Planning Time (s)

6

8

10

12

14

16

18

20

22

C
o
s
t
o
f
b
e
s
t
s
o
l
u
t
i
o
n
(
s
)

RRT* w/ NLP Steering

RRT* w/ S3F Steering

Kinodynamic RRT

SST

(b) Tractor Trailer average solution cost vs runtime

0 50 100 150 200 250 300

Planning Time (s)

5

10

15

20

25

30

35

40

C
o
s
t
o
f
b
e
s
t
s
o
l
u
t
i
o
n
(
s
)

RRT* w/ NLP Steering

RRT* w/ S3F Steering

Kinodynamic RRT

SST

(c) Quadrotor average solution cost vs runtime

Figure 6: Comparison of the planning results of the S3F-RRT*,
NLP-RRT*, RRT and SST planning algorithms on the three
robot domains. Planning time is plotted against the cost of
the best solution found thus far, averaged across 25 planning
trials.

Dubin’s Car Tractor Trailer Quadrotor

f (%) t (𝑠) f (%) t (𝑠) f (%) t (𝑠)

RRT 4 0.251 0 0.083 10 0.789

S3F-RRT
∗

20 0.480 28 1.910 0 16.386

NLP-RRT
∗

92 21.307 100 – 70 168.656

SST 12 10.013 48 11.075 100 –

Figure 7: Failure rate (f) and time to first solution (t) of dif-
ferent planners

decreasing, since the cost of best solution before a solution is found

cannot be plotted. We observe in the graphs that S3F-RRT* is able to

find solutions very quickly, and is able to find better solutions than

the baseline algorithms irrespective of the amount of computation

time given. One of the key reasons why this occurs is that due

to the speed of evaluation of the learned steering function, many

more RRT* iterations can be completed in a unit time as opposed to

NLP-RRT*, enabling the more rapid exploration of the state space

by the sampling-based planning algorithm. Furthermore, because

S3F does a good job at approximating the optimal steering function,

waypoints in the final planned path are connected in a near-optimal

fashion. This is something that the baseline algorithms like SST and

RRT are unable to do, because in these algorithms waypoints are

connected by randomly sampled trajectories, resulting in significant

suboptimality.

Figure 7 depicts the rate of failure and average time to first

solution of the different algorithms. The time to first solution differs

from the cost of best solution in Figure 6 in that the former only

considers how long it takes to find the first feasible solution. We

can see that across the different problem spaces, S3F-RRT* has

lower rates of failure than SST and NLP-RRT*. Figure 6c seems to

show that S3F-RRT* and NLP-RRT* have similar performance on

the quadrotor domain, but the data in the table shows that S3F-

RRT* has a much lower rate of failure and finds its first solution

far more quickly, demonstrating that S3F-RRT* indeed has better

performance. S3F-RRT* on average is able to find its first solution

almost as quickly as RRT. It takes on average an order of magnitude

more time for SST and NLP-RRT* to find their first solutions.

4 CONCLUSION
We introduced State Supervised Steering Function, a learning based

approximation of the optimal steering function for complex kinody-

namic systems. We demonstrate that the learned steering function

can be used in sampling-based planners to achieve superior plan-

ning results. This superiority is assessed on metrics of time to find

solution and quality of solution for three challenging robot domains.

Finally, we present a proof of probabilistic completeness of RRT*

using S3F, demonstrating its theoretical soundness.

ACKNOWLEDGMENTS
This work has taken place in the Autonomous Mobile Robotics

Laboratory (AMRL) at UT Austin. AMRL research is supported in

part by NSF (CAREER-2046955, IIS-1954778, SHF-2006404), ARO

(W911NF-19-2-0333,W911NF-21-20217), DARPA (HR001120C0031),

Amazon, JP Morgan, and Northrop GrummanMission Systems. The

views and conclusions contained in this document are those of the

authors alone.

REFERENCES
[1] Ross Allen and Marco Pavone. 2016. A real-time framework for kinodynamic

planning with application to quadrotor obstacle avoidance. In AIAA Guidance,
Navigation, and Control Conference. 1374.

[2] David Balaban, Alexander Fischer, and Joydeep Biswas. 2018. A Real-Time Solver

For Time-Optimal Control Of Omnidirectional Robots with BoundedAcceleration.

8027–8032. https://doi.org/10.1109/IROS.2018.8594306

[3] Victor M Becerra. 2010. Solving complex optimal control problems at no cost

with PSOPT. In 2010 IEEE International Symposium on Computer-Aided Control
System Design. IEEE, 1391–1396.

[4] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone. 2019.

GuSTO: Guaranteed sequential trajectory optimization via sequential convex

programming. In 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 6741–6747.

[5] Leonid Butyrev, Thorsten Edelhäußer, and Christopher Mutschler. 2019. Deep

reinforcement learning for motion planning of mobile robots. arXiv preprint
arXiv:1912.09260 (2019).

[6] Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra

Faust. 2019. RL-RRT: Kinodynamic motion planning via learning reachability

estimators from RL policies. IEEE Robotics and Automation Letters 4, 4 (2019),
4298–4305.

[7] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. 2019. Search on

the replay buffer: Bridging planning and reinforcement learning. arXiv preprint
arXiv:1906.05253 (2019).

[8] Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia,

Marek Fiser, and James Davidson. 2018. PRM-RL: Long-range robotic navigation

tasks by combining reinforcement learning and sampling-based planning. In

2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
5113–5120.

[9] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. 2014. In-

formed RRT*: Optimal sampling-based path planning focused via direct sampling

of an admissible ellipsoidal heuristic. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2997–3004.

[10] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. 2015. Batch

informed trees (BIT*): Sampling-based optimal planning via the heuristically

guided search of implicit random geometric graphs. In 2015 IEEE international
conference on robotics and automation (ICRA). IEEE, 3067–3074.

[11] Pradipto Ghosh and Bruce Conway. 2012. Near-optimal feedback strategies

for optimal control and pursuit-evasion games: a spatial statistical approach. In

AIAA/AAS astrodynamics specialist conference. 4590.
[12] Kris Hauser and Yilun Zhou. 2016. Asymptotically optimal planning by feasible

kinodynamic planning in a state–cost space. IEEE Transactions on Robotics 32, 6
(2016), 1431–1443.

[13] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and

Stefan Schaal. 2011. STOMP: Stochastic trajectory optimization for motion

planning. In 2011 IEEE international conference on robotics and automation. IEEE,
4569–4574.

[14] Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal

motion planning. The international journal of robotics research 30, 7 (2011), 846–

894.

[15] Michal Kleinbort, Kiril Solovey, Zakary Littlefield, Kostas E Bekris, and Dan

Halperin. 2018. Probabilistic completeness of RRT for geometric and kinodynamic

planning with forward propagation. IEEE Robotics and Automation Letters 4, 2

(2018), x–xvi.

[16] George P Kontoudis and Kyriakos G Vamvoudakis. 2019. Kinodynamic motion

planning with continuous-time Q-learning: An online, model-free, and safe

navigation framework. IEEE transactions on neural networks and learning systems
30, 12 (2019), 3803–3817.

[17] StevenMLaValle and James J Kuffner Jr. 2001. Randomized kinodynamic planning.

The international journal of robotics research 20, 5 (2001), 378–400.

[18] Linjun Li, Yinglong Miao, Ahmed H Qureshi, and Michael C Yip. 2021. MPC-

MPNet: Model-Predictive Motion Planning Networks for Fast, Near-Optimal

Planning under Kinodynamic Constraints. IEEE Robotics and Automation Letters
6, 3 (2021), 4496–4503.

[19] Yanbo Li, Zakary Littlefield, and Kostas E Bekris. 2015. Sparse methods for effi-

cient asymptotically optimal kinodynamic planning. In Algorithmic foundations
of robotics XI. Springer, 263–282.

[20] Zakary Littlefield and Kostas E Bekris. 2018. Efficient and asymptotically optimal

kinodynamic motion planning via dominance-informed regions. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 1–9.

[21] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under

reward transformations: Theory and application to reward shaping. In Icml,
Vol. 99. 278–287.

[22] Daniel Perille, Abigail Truong, Xuesu Xiao, and Peter Stone. 2020. Benchmark-

ing metric ground navigation. In 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 116–121.

[23] Mihail Pivtoraiko and Alonzo Kelly. 2011. Kinodynamic motion planning with

state lattice motion primitives. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2172–2179.

[24] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. 2009.

CHOMP: Gradient optimization techniques for efficient motion planning. In 2009
IEEE International Conference on Robotics and Automation. IEEE, 489–494.

[25] Carlos Sánchez-Sánchez and Dario Izzo. 2018. Real-time optimal control via deep

neural networks: study on landing problems. Journal of Guidance, Control, and
Dynamics 41, 5 (2018), 1122–1135.

[26] Dharmesh Tailor and Dario Izzo. 2019. Learning the optimal state-feedback via

supervised imitation learning. Astrodynamics 3, 4 (2019), 361–374.
[27] Panagiotis Tsiotras and Ricardo Sanz Diaz. 2014. Real-time near-optimal feedback

control of aggressive vehicle maneuvers. In Optimization and optimal control in
automotive systems. Springer, 109–129.

[28] Dustin J Webb and Jur Van Den Berg. 2013. Kinodynamic RRT*: Asymptoti-

cally optimal motion planning for robots with linear dynamics. In 2013 IEEE
International Conference on Robotics and Automation. IEEE, 5054–5061.

[29] Wouter J Wolfslag, Mukunda Bharatheesha, Thomas M Moerland, and Martijn

Wisse. 2018. RRT-CoLearn: towards kinodynamic planning without numerical

trajectory optimization. IEEE Robotics and Automation Letters 3, 3 (2018), 1655–
1662.

[30] Christopher Xie, Jur van den Berg, Sachin Patil, and Pieter Abbeel. 2015. Toward

asymptotically optimal motion planning for kinodynamic systems using a two-

point boundary value problem solver. In 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 4187–4194.

[31] Mandy Xie and Frank Dellaert. 2020. Batch and incremental kinodynamic motion

planning using dynamic factor graphs. arXiv preprint arXiv:2005.12514 (2020).
[32] Dongliang Zheng and Panagiotis Tsiotras. 2021. Sampling-based Kinodynamic

Motion Planning Using a Neural Network Controller. In AIAA Scitech 2021 Forum.

1754.

https://doi.org/10.1109/IROS.2018.8594306

State Supervised Steering Function for Sampling-based
Kinodynamic Planning

Pranav Atreya

University of Texas at Austin

Austin, TX, United States

pranavatreya@utexas.edu

Joydeep Biswas

University of Texas at Austin

Austin, TX, United States

joydeepb@cs.utexas.edu

ACM Reference Format:
Pranav Atreya and Joydeep Biswas. 2022. State Supervised Steering Function

for Sampling-based Kinodynamic Planning. In Proc. of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
Online, May 9–13, 2022, IFAAMAS, 2 pages.

1 SUPPLEMENTARY MATERIALS
1.1 Robot State/Control Space Bounds
The following are the bounds of the state and control variables for

the Dubin’s Car with Acceleration robot domain:

𝑥 : [−5, 5]𝑚 𝑦 : [−5, 5]𝑚

𝜃 : [0, 2𝜋]𝑟𝑎𝑑 𝑣 : [−3, 3]𝑚
𝑠

𝑘 : [−1, 1]𝑚−1 𝑎 : [−1, 1]𝑚
𝑠2

The following are the bounds of the state and control variables for

the Tractor Trailer robot domain:

𝑥 : [−5, 5]𝑚 𝑦 : [−5, 5]𝑚

𝜃 : [0, 2𝜋]𝑟𝑎𝑑 𝑣 : [−1, 1]𝑚
𝑠

𝛼 : [0, 2𝜋]𝑟𝑎𝑑 𝐿 : 0.25𝑚

𝐷 : 0.5𝑚 𝑎 : [−1, 1]𝑚
𝑠2

𝜙 : [tan−1 (−𝐿), tan−1 (𝐿)]𝑟𝑎𝑑
The following are the bounds of the state and control variables for

the Quadrotor robot domain:

𝑥 : [−5, 5]𝑚 𝑦 : [−5, 5]𝑚

𝑧 : [0, 5]𝑚 ¤𝑥 : [−3, 3]𝑚
𝑠

¤𝑦 : [−3, 3]𝑚
𝑠

¤𝑧 : [−1, 1]𝑚
𝑠

𝜃 : [−𝜋

2

,
𝜋

2

]𝑟𝑎𝑑 𝜙 : [−𝜋

2

,
𝜋

2

]𝑟𝑎𝑑

𝛾 : [−𝜋, 𝜋]𝑟𝑎𝑑 ¤𝜃 : [−𝜋, 𝜋] 𝑟𝑎𝑑
𝑠

¤𝜙 : [−𝜋, 𝜋] 𝑟𝑎𝑑
𝑠

¤𝛾 : [−𝜋

2

,
𝜋

2

] 𝑟𝑎𝑑
𝑠

𝑤 : 1.2𝑘𝑔 𝐿 : 0.3𝑚

𝑟 : 0.1𝑚 𝑏 : 0.0245

𝜏1 : [1.994, 10.095]𝑁 𝜏2 : [1.994, 10.095]𝑁
𝜏3 : [1.994, 10.095]𝑁 𝜏4 : [1.994, 10.095]𝑁

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

1.2 Implementation Details
All of the experiments were run on a Parallels Desktop virtual

machine running Ubuntu ARM64 on a 2020 M1 Macbook Air. The

virtual machine was equipped with 4 processing cores and 4 GB

RAM.

For the planning experiments, the S3F-RRT*, NLP-RRT*, and RRT

algorithms were implemented in C++ by the authors. The Open

Motion Planning Library (OMPL) [4] was used for the implementa-

tion of the SST algorithm. For training dataset generation and in

NLP-RRT*, the PSOPT [1] optimal control library was used as the

NLP solver.

The policy 𝜋 in S3F was represented as a feedforward neural

network. A two hidden layer 256 neuron network with tanh acti-

vations was used for both the Dubin’s car with acceleration and

tractor trailer problem spaces. A three hidden layer 256 neuron net-

work with the same activations was used for the quadrotor problem

space.

1.3 Probabilistic Completeness Proof
Here we present a proof of probabilistic completeness (PC) of the

S3F-RRT* algorithm. S3F-RRT* is a modification of the original

RRT* algorithm [2] designed to make use of a learned steering

function. The proof largely follows the structure of the proof of

probabilistic completeness of geometric RRT [3], though significant

modifications have been made to take into account the presence of

kinodynamic constraints and the use of a learned steering function.

Let 𝑐∗ (𝑥𝑎, 𝑥𝑏) denote the cost of the optimal trajectory from 𝑥𝑎
to 𝑥𝑏 , or equivalently the kinodynamic distance from 𝑥𝑎 to 𝑥𝑏 . We

assume that 𝑐∗ obeys the triangle inequality, that is, 𝑐∗ (𝑥𝑎, 𝑥𝑏) ≤
𝑐∗ (𝑥𝑎, 𝑥) + 𝑐∗ (𝑥, 𝑥𝑏) for all 𝑥 ∈ 𝑋 . Let 𝑆 be a learned steering func-

tion. We assume that with nonzero probability 𝑝 , 𝑆 (𝑥𝑎, 𝑥𝑏) yields
a state function Γ̃ that satisfies 𝑐∗ (Γ̃(𝑡), 𝑥𝑏) ≤ 𝑐∗ (𝑥𝑎, 𝑥𝑏) for all
𝑡 ∈ [0, 𝑡𝑓]. This assumption in essence states that every state along

the path produced by 𝑆 is kinodynamically closer to the goal state

than the start state is. For a steering function trained to be optimal,

this is a reasonable assumption.

We will use 𝐵𝑟 (𝑥) to denote the subset of the state space 𝑋

defined by {𝑥 ′ |𝑐∗ (𝑥 ′, 𝑥) ≤ 𝑟 }. For simplicity, we assume that there

exist 𝛿
goal

> 0, 𝑥
goal

∈ 𝑋
goal

such that 𝐵𝛿
goal

(𝑥
goal

) ⊆ 𝑋
goal

. We

denote this simplified goal region 𝐵𝛿
goal

(𝑥
goal

) as 𝑋 ∗
goal

. The goal of

the motion planning problem is to find a kinodynamically feasible

path 𝜋 : [0, 𝑡𝜋] → 𝑋
free

such that 𝜋 (0) = 𝑥init and 𝜋 (𝑡𝜋) ∈ 𝑋 ∗
goal

.

The clearance of 𝜋 is the maximal 𝛿
clear

such that 𝐵𝛿
clear

(𝜋 (𝑡)) ∈
𝑋
free

for all 𝑡 ∈ [0, 𝑡𝜋].
We assume for this proof that there exists a valid trajectory

𝜋 : [0, 𝑡𝜋] → 𝑋
free

with clearance 𝛿
clear

> 0. Without loss of

generality, assume that 𝜋 (𝑡𝜋) = 𝑥
goal

, i.e., the trajectory terminates

at the center of the goal region. Let 𝐿 be the total cost of 𝜋 , and

let 𝑣 = 𝑚𝑖𝑛(𝛿
clear

, 𝛿
goal

). Let 𝑚 = 3𝐿
𝑣 . Define a sequence of 𝑚 +

1 points 𝑥0 = 𝑥init, ..., 𝑥𝑚 = 𝑥
goal

along 𝜋 such that the cost of

traversal from one point to the next is
𝑣
3
. Therefore, 𝑐∗ (𝑥𝑖 , 𝑥𝑖+1) ≤ 𝑣

3

for every 0 ≤ 𝑖 < 𝑚. We will now prove that as the number of

iterations increases, the S3F-RRT* algorithm will generate a path

passing through the vicinity of these𝑚 + 1 points with probability

asymptotically approaching one.

Lemma 1.1. Suppose that S3F-RRT* has reached 𝐵 𝑣
3

(𝑥𝑖), that is, its
tree contains a vertex 𝑥 ′

𝑖
such that 𝑥 ′

𝑖
∈ 𝐵 𝑣

3

(𝑥𝑖). If 𝑥rand ∈ 𝐵 𝑣
3

(𝑥𝑖+1)
and 𝑐∗ (𝑥𝑖 , 𝑥rand) ≤ 𝑣

3
(equivalently 𝑥𝑖 ∈ 𝐵 𝑣

3

(𝑥
rand

)), then the path
from the nearest neighbor 𝑥near to 𝑥rand lies entirely in 𝑋

free
with

probability 𝑝 .

Proof. Because 𝑥near is the nearest neighbor, it is true that

𝑐∗ (𝑥near, 𝑥rand) ≤ 𝑐∗ (𝑥 ′
𝑖
, 𝑥

rand
). Invoking the triangle inequality,

𝑐∗ (𝑥near, 𝑥𝑖+1) ≤ 𝑐∗ (𝑥near, 𝑥rand) + 𝑐∗ (𝑥rand, 𝑥𝑖+1)
≤ 𝑐∗ (𝑥 ′𝑖 , 𝑥rand) + 𝑐

∗ (𝑥
rand

, 𝑥𝑖+1)
≤ 𝑐∗ (𝑥 ′𝑖 , 𝑥𝑖) + 𝑐

∗ (𝑥𝑖 , 𝑥rand) + 𝑐∗ (𝑥rand, 𝑥𝑖+1)

≤ 3

𝑣

3

= 𝑣

Thus𝑥near ∈ 𝐵𝑣 (𝑥𝑖+1), meaning𝑥near ∈ 𝑋
free

. Assume that 𝑐∗ (Γ̃(𝑡), 𝑥𝑏) ≤
𝑐∗ (𝑥𝑎, 𝑥𝑏). The probability that this occurs is 𝑝 . Since each state

along Γ̃ is closer or as close to 𝑥
rand

as 𝑥near, the same logic that was

applied above to 𝑥near can be applied to each respective state. Thus,

with probability 𝑝 , the path from 𝑥near to 𝑥rand will lie entirely in

𝑥
free

. □

Theorem 1.2. The probability that S3F-RRT* fails to reach 𝑋 ∗
goal

from 𝑥init after 𝑘 iterations is at most 𝑎𝑒−𝑏𝑘 , for some constants
𝑎, 𝑏 ∈ R>0.

Proof. Assume that 𝐵 𝑣
3

(𝑥𝑖) already contains an S3F-RRT* ver-

tex. Let 𝑟𝑖 be the probability that in the next iteration a S3F-RRT*

vertex will be added to 𝐵 𝑣
3

(𝑥𝑖+1). Recall that due to lemma 1.1,

𝑥
rand

∈ 𝐵 𝑣
3

(𝑥𝑖+1) and 𝑐∗ (𝑥𝑖 , 𝑥rand) ≤ 𝑣
3
implies that the path from

𝑥near to 𝑥
rand

will lie entirely in 𝑋
free

with probability 𝑝 . In the

S3F-RRT* algorithm, after 𝑥
rand

is sampled, all states in 𝑋near are

considered as possible parent states. By the definition of𝑋near, 𝑥near
is a part of this candidate set. Thus, it is guaranteed that 𝑥new will be

added as a S3F-RRT* vertex with probability greater than or equal

to 𝑝 . Assume that the probability that both 𝑥
rand

∈ 𝐵 𝑣
3

(𝑥𝑖+1) and
𝑐∗ (𝑥𝑖 , 𝑥rand) ≤ 𝑣

3
is𝛾𝑖 > 0. It is safe to assume that this probability is

nonzero because any state along the path produced by 𝑆∗ (𝑥𝑖 , 𝑥𝑖+1)
satisfies these constraints, and so does any state along the por-

tion of 𝜋 from 𝑥𝑖 to 𝑥𝑖+1. Finally, let the conditional probability that
𝑥new ∈ 𝐵 𝑣

3

(𝑥𝑖+1) given that 𝑥rand ∈ 𝐵 𝑣
3

(𝑥𝑖+1) and 𝑐∗ (𝑥𝑖 , 𝑥rand) ≤ 𝑣
3

be 𝜅𝑖 > 0. It is again safe to assume that this probability is nonzero

because Γ̃ closely approximates Γ∗, meaning 𝑥new will be close to

𝑥
rand

. Taking into account these probabilities, we have 𝑟𝑖 = 𝑝𝛾𝑖𝜅𝑖 .

Note that this expression is independent of 𝑘 .

Let 𝑟 be the minimum of the probabilities {𝑟𝑖 |∀𝑖 (0 ≤ 𝑖 < 𝑚)}. In
order for the S3F-RRT* algorithm to reach 𝑋 ∗

goal
from 𝑥init, a S3F-

RRT* vertex must be added to 𝐵 𝑣
3

(𝑥𝑖+1)𝑚 times for 0 ≤ 𝑖 < 𝑚. This

stochastic process can be defined as a Markov chain. Alternatively,

this process can be described as 𝑘 Bernoulli trials with success

probability 𝑟 . The planning problem can be solved after𝑚 successful

outcomes. Note that the success probability 𝑟 is an underestimate of

the true success probability for each trial, and that it is possible that

the process ends after less than𝑚 successful outcomes. Defining

the problem in such a manner allows us to obtain an upper bound

on the probability of failure.

Next, we bound the probabilty of faiure, that is, the probability

that the process does not reach state𝑚 after 𝑘 steps. Let 𝑋𝑘 denote

the number of successes in 𝑘 trials, then

𝑃𝑟 [𝑋𝑘 < 𝑚] =
𝑚−1∑︁
𝑖=0

(
𝑘

𝑖

)
𝑟 𝑖 (1 − 𝑟)𝑘−𝑖

≤
𝑚−1∑︁
𝑖=0

(
𝑘

𝑚 − 1

)
𝑟 𝑖 (1 − 𝑟)𝑘−𝑖

≤
(

𝑘

𝑚 − 1

)𝑚−1∑︁
𝑖=0

(1 − 𝑟)𝑘

≤
(

𝑘

𝑚 − 1

)𝑚−1∑︁
𝑖=0

(𝑒−𝜏)𝑘

=

(
𝑘

𝑚 − 1

)
𝑚𝑒−𝑟𝑘

=

∏𝑘
𝑖=𝑘−𝑚 𝑖

(𝑘 − 1)! 𝑚𝑒−𝑟𝑘

≤ 𝑚

(𝑚 − 1)!𝑘
𝑚𝑒−𝑟𝑘

where the second statement is justified since 𝑚 << 𝑘 , the third

statement uses the fact that 𝑟 < 1

2
, and the fourth statement relies

on (1 − 𝑟) ≤ 𝑒−𝜏 . As 𝑟,𝑚 are fixed and independent of 𝑘 , the

expression
1

(𝑚−1)!𝑘
𝑚𝑚𝑒−𝑟𝑘 decays to zero exponentially with 𝑘 .

Therefore, S3F-RRT* is probabilistically complete. □

REFERENCES
[1] Victor M Becerra. 2010. Solving complex optimal control problems at no cost with

PSOPT. In 2010 IEEE International Symposium on Computer-Aided Control System
Design. IEEE, 1391–1396.

[2] Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal

motion planning. The international journal of robotics research 30, 7 (2011), 846–894.
[3] Michal Kleinbort, Kiril Solovey, Zakary Littlefield, Kostas E Bekris, and Dan

Halperin. 2018. Probabilistic completeness of RRT for geometric and kinody-

namic planning with forward propagation. IEEE Robotics and Automation Letters
4, 2 (2018), x–xvi.

[4] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. 2012. The Open Motion Planning

Library. IEEE Robotics & Automation Magazine 19, 4 (December 2012), 72–82.

https://doi.org/10.1109/MRA.2012.2205651 https://ompl.kavrakilab.org.

https://doi.org/10.1109/MRA.2012.2205651
https://ompl.kavrakilab.org

	Abstract
	1 Introduction and Related Work
	2 Kinodynamic Planning with State Supervised Steering Function
	2.1 Steering Function Formulation
	2.2 Learning the Policy
	2.3 Sampling-based Planning With Learned Steering Functions: S3F-RRT*
	2.4 Correctness of S3F-RRT*
	2.5 Probabilistic Completeness Proof of S3F-RRT*

	3 Experimental Results
	3.1 Robot Kinodynamics
	3.2 S3F Evaluation
	3.3 Planning Comparisons

	4 Conclusion
	Acknowledgments
	References
	1 Supplementary Materials
	1.1 Robot State/Control Space Bounds
	1.2 Implementation Details
	1.3 Probabilistic Completeness Proof

	References

