
An FPGA Overlay for Efficient Real-Time
Localization in 1/10th Scale Autonomous Vehicles

Andrea Bernardi, Gianluca Brilli, Alessandro Capotondi, Andrea Marongiu, Paolo Burgio
University of Modena and Reggio Emilia, Italy

name.surname@unimore.it

Abstract—Heterogeneous systems-on-chip (HeSoC) based on
reconfigurable accelerators, such as Field-Programmable Gate
Arrays (FPGA), represent an appealing option to deliver the
performance/Watt required by the advanced perception and
localization tasks employed in the design of Autonomous Vehicles.
Different from software-programmed GPUs, FPGA development
involves significant hardware design effort, which in the context
of HeSoCs is further complicated by the system-level integration
of HW and SW blocks. High-Level Synthesis is increasingly
being adopted to ease hardware IP design, allowing engineers to
quickly prototype their solutions. However, automated tools still
lack the required maturity to efficiently build the complex hard-
ware/software interaction between the host CPU and the FPGA
accelerator(s). In this paper we present a fully integrated system
design where a particle filter for LiDAR-based localization is
efficiently deployed as FPGA logic, while the rest of the compute
pipeline executes on programmable cores. This design constitutes
the heart of a fully-functional 1/10th-scale racing autonomous car.
In our design, accelerated IPs are controlled locally to the FPGA
via a proxy core. Communication between the two and with the
host CPU happens via shared memory banks also implemented as
FPGA IPs. This allows for a scalable and easy-to-deploy solution
both from the hardware and software viewpoint, while providing
better performance and energy efficiency compared to state-of-
the-art solutions.

I. INTRODUCTION

Autonomous Vehicles (AV) must elaborate in real-time an
enormous amount of information from different sensors such
as RGB cameras, LiDARs, radars and IMUs [1]–[3] to safely
take informed decisions. To implement on-board Domain Con-
trollers, embedded accelerators based on Field Programmable
Gate Arrays (FPGAs) are becoming an appealing choice due
to their flexibility, throughput and energy-efficiency [4].

The main limiting factor in adopting FPGAs is the complex
development process. One promising technique for improving
design productivity is to use a virtual hardware representation
that overlays the original FPGA fabric, referred to as an
overlay architecture [5]. Overlays are programmable, coarse-
grained hardware abstraction layers on top of the FPGA
hardware, abstracting the underlying hardware details as a
software-managed task, which can be hooked to standard APIs
for heterogeneous compute platform programming.

In this work, we explore how such technology can be
adapted and tailored to deploy a fully functional AV stack
in a simple and effective – but most important scalable –
manner. Our target is a state-of-the-art heterogeneous FPGA
SoC, the Xilinx Zynq Ultrascale+, employed as the Domain

Controller of a 1/10th1 scale racing vehicle prototype [6]. We
provide a solution for offloading the localization component
of a typical AV driving stack, where the vehicle matches the
data coming from perception modules (i.e., from a LiDAR
sensor) with a pre-built map for precise localization. We
employ a well-known Monte-Carlo method called Particle
Filter (PF) [7], which is a perfect candidate for acceleration
on a highly parallel co-processor. We first describe a design
space exploration of the PF accelerator IP, discussing the trade-
offs among performance, accuracy and area occupation. This
exploration enables fast performance tuning under different
racing scenarios and vehicle hardware configurations.

Second, we show how to deploy a fully functional system
where the entire application is considered. Besides the PF, the
rest of the AV driving software stack is typically deployed
on general-purpose cores in heterogeneous FPGA SoCs. This
type of partitioning is per-se a complex task but also entails
repeated movement of data between the host CPU and the
accelerator, which hinders performance. We discuss how the
proposed overlay architecture can optimize memory transfers
among the two subsystems, thanks to a local core to the
acceleration logic, which we call the Proxy Core. We present
the integrated AV design step by step, highlighting how the
overlay methodology simplifies the deployment.

An extensive experimental campaign illustrates the various
aspects of the performance improvement enabled by hardware
acceleration and the Proxy Core compared to the pure SW
implementation running on the host cores, targeting two state-
of-the-art embedded SoC from the Xilinx Ultrascale+ family.
While FPGA acceleration of PF alone speeds up CPU execu-
tion by a factor of 2.5×, employing the overlay and the Proxy
Core provides an additional ≈ 2× speedup. Experiments were
conducted on real-life racetracks, representing relevant corner
cases for the targeted application domain.

This paper is structured as follows. Section II shows our
reference hardware platform and the target AV software stack.
Section III shows our novel methods both for the host and the
accelerated platform. Section IV validates the effectiveness of
our approaches, in terms of top/average speed and throughput
achieved within the PF component. Section V highlights the
state-of-the-art in the field of perception and localization on
FPGA-based SoCs. Section VI concludes the paper.

1https://f1tenth.org/



Fig. 1: The F1/10 vehicle prototype.

Fig. 2: Scheme and timing breakdown of the reference Particle
Filter executed on a Xilinx ZCU102 board.

II. BACKGROUND

Our target AV software stack is partitioned in a typical
perception-plan-act design for racing vehicles. The main com-
ponent is the LiDAR sensor that is used to localize the car in
a known map through a method called Particle Filter (PF) [7]
(see Figure 1). The optimal trajectory of the car is calculated
offline via Path Planning [8]. The control loop is closed by
a well-known Pure Pursuit [9] algorithm that proves itself an
optimal tradeoff between complexity and effectiveness at the
speeds our vehicle is expected to race.

Figure 2 shows the software implementation [7] of our
reference Particle Filter in its building blocks. It is composed
of five main stages, as follows: i) Resample: a high number of
particles (i.e., position candidates) is randomly generated. ii)
Motion Model: updates the particles with data from odometry.
This data might not be accurate, and typically Gaussian noise
is added. iii) Ray Marching: creates rays2 centered in each
particle, representing their 〈x, y, θ〉 poses given the measured
ranges from the LiDAR scanner. This step is iterated until
rays cover all the map. iv) Compute Weights: associates a
weight to each particle depending on how much it matches the
“world” as seen by the LiDAR sensors. v) Normalize: flattens
the weights within the [0,1] interval.

2The number of rays depends on the LiDAR’s resolution (1081 in our
Hokuyo UST-10LX).

Fig. 3: Simple Particle Filter Partitioning between ARM host
and Programmable Logic

Processing
System

DRAM

Map_RD

Part_RD

Mm

M3

M2

RMn

x

…

RM1

RM2

RM0

…

MapLoader

Particles 
Reader

Rays 
Writer

FIFO

Ray_WR

Rm0_RD

Rm1_RD

Rm2_RD

RmN_RD

Map_WR
M0

Ray Marching Engine

Shared Map Mem.

AXI4 Slave
AXI4 Master
32‐bit AXI4
16‐bit AXI4
16‐bit Signal

#PEs

#Banks

Fig. 4: System organization and Ray Marching Engine internal
architecture, acting as co-processor for the PS.

Figure 2 also shows a timing breakdown of the software-
only implementation of the algorithm running on a host core
(ARM Cortex-A53) of a Xilinx ZCU102. For 1000 particles
and 1081 rays, the system sustains a rate of 4 FPS, still not
close enough to the 40 Hz of a common vehicle LiDAR. Being
a Monte-Carlo method, it is highly data-parallel because all
stages but the latter work on each particle independently. This
makes the PF the primary candidate for FPGA acceleration.

III. FPGA-OVERLAY FOR REAL-TIME LOCALIZATION

To improve end-to-end latency of the whole compute
pipeline we need to tackle two problems: how to partition
the computation among the host CPUs and the Programmable
Logic, and how to design the chosen HW accelerator(s).

Driven by the profiling shown in Figure 2 we first design an
HW Accelerator for the Ray Marching (which takes up to 90%
of the latency of the whole PF), following “typical” partition-
ing strategies and FPGA design flows. Second, after assessing
the performance gain of accelerating Ray Marching alone, we
present a system-level solution, based on an FPGA overlay
which integrates the Marching accelerator with a soft-core –
called Proxy Core [10] – used to implement in a resource-
efficient way the additional particle filter components.

Ray Marching Compute Engine (RME). Figure 3 shows
a simple partitioning strategy for accelerating the Particle
Filter, where the Ray Marching algorithm is implemented in
hardware and the four remaining stages execute on one host
processor. Figure 4 shows the Ray Marching Engine (RME)
internal design and its interfaces.

An RME Engine has three AXI4 Master Interfaces:
Map RD port for initializing the map; Part RD port used



Programmable Logic

x

Processing
System

DRAM
Core (uBlaze‐
RISC‐V)

AXI4 Slave
AXI4 Master
32‐bit AXI4

#E
ng
in
es

Ray Marching
Enginei

Ray Marching
Engine0

…

Scratchpad

Fig. 5: Proposed FPGA-overlay architecture.

for reading the particles from the DRAM; and Ray WR port
used for writing out the calculated rays. The main internal
components of a single RME are:

• A MapLoader for initializing the Shared Map Memory.
This process is only done once at boot time;

• A multi-banked Shared Map Memory for storing the map
of the environment;

• A parametric number of Processing Elements (PEs). PEs
execute in parallel the calculations for a single particle;

• Particle Reader and Rays Writer FSM for dispatching
and collecting input and outputs.

The number of PEs and memory banks of the Shared Map
Memory is parametric and can be adjusted according to the
required latency and available resources. Moreover, as shown
in Figure 4, more than one RME can be instantiated in a
system connecting them through a simple crossbar.

The RME is implemented using Vivado 2019.2 HLS, ex-
ploits internally 16-bit fixed-point arithmetic, and supports
up to 16 PEs for each engine. The number of RME is only
limited by the resources available in the programmable logic.
If more than one RME is employed, the accelerators can work
asynchronously on a different set of particles.

Accelerating the sole Ray Marching stage would imply a
delay in transferring data back and forth between the host and
the accelerator. Executing more stages of the pipeline in the
programmable logic and sharing the data structure containing
particles and rays would through these stages improves the
performance, as all the computation is done on a memory
that is local to the accelerator. On the other hand, considering
the profiling shown in the previous section it does not make
sense to implement a HW IP for every other stage of the
pipeline, as this would inefficiently use PL area. That’s where
our overlay and Proxy Core come into play, allowing for the
execution of critical PF stages local to the memory where the
HW accelerator has generated its output.

FPGA-Overlay Architecture. The proposed overlay de-
sign is composed of three main components: the Ray Marching
Engine, as described above; a RISC soft-core deployed on
the Programmable Logic; and a shared Scratchpad memory
used for storing temporary buffers. Figure 5 shows how the
design is connected to the PS subsystem. As an embodiment
of our proxy core we rely on a Xilinx uBlaze Microcontroller.
Open-source cores, such as RISC-V [10], [11] might also be
considered.

Fig. 6: Particle Filter Partitioning between ARM host, Proxy
Core and RM Engine.

The proxy core enables offloading the Compute Weights
stage into the Programmable Logic, removing the need to
move data out of the Ray Marching. The new HW/SW
partitioning of the particle filter algorithms is described in
Figure 6. Our design still requires some data to be exchanged
between the PL modules and the host. These data are the
vehicle odometry, LiDAR point-cloud, and the particle filter
structure (≈1KB), which we got by sensor drivers (namely,
Ethernet and CAN) of the ARM GNU/Linux, and from the
Resample step. It takes significantly less time to transfer than
the whole particles+rays data structure, as said, 4KB.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We target two development boards, namely Avnet Ultra96
and Xilinx ZCU102. They have the same processing system
(PS) but are distinguished mainly by the available resources
of the programmable logic3. Since we target racing vehicles,
our goal is to achieve the maximum average speed on a single
lap, to minimise the lap time. At the same time, we also wish
to maximise our peak speed because it is helpful in head-to-
head situations, e.g., when overtaking. Hence, we adopt these
two metrics, and more in detail, we want to show how close
we can get to the ideal speeds, as computed by the planning
algorithm. We focus on the localisation component, whose
performance has room for improvement with HW acceleration.
In the Particle Filter method, the critical parameter is the
number of random particles/candidate positions that we can
process before a new LiDAR frame is captured (at 40Hz).
Intuitively, the higher the number of particles, the more precise
we can localise the vehicle and hence the higher the speed we
can sustain. At the same time, if we increase the computational
workload, we might not be able to process a high(er) number
of particles in time and lose localisation at high speeds. There
is a minimum number of particles under which the localisation
algorithm fails. Large tracks and tracks with long straights
or wide lanes inherently require spawning a higher number

3The Ultra96 is equipped with a Xilinx Zynq UltraScale+ MPSoC ZU3EG,
while the Xilinx ZU102 features a more powerful, ZU9EG SoC.



Room 1.8 New York Montreal
Montreal
Extended

Fig. 7: Racetracks maps (dimensions in pixels), with ideal trajectory and speeds.

Particles

m
/s

0

1

2

3

4

10 50 100 500 1000

PS PL_U96 PL_ZCU102 Target
Room 1.8 - Average Speed 

Particles

m
/s

0

1

2

3

4

5

10 50 100 500 1000

PS PL_U96 PL_ZCU102 Target

Room 1.8 - Speed Max

Fig. 8: Average and Max speed for Room 1.8 Dataset.

Particles

m
/s

0

2

4

10 50 100 500 1000

PS PL_U96 PL_ZCU102 Target
New York - Average Speed 

Particles

m
/s

0

2

4

6

8

10 50 100 500 1000

PS PL_U96 PL_ZCU102 Target

New York - Speed Max

Fig. 9: Average and Max speed for New York Dataset.

of particles. For this reason, we repeated our experiments
on four tracks with increasing complexity. The first one
(Figure 7, on the left) is a track we built in a room in our
department (Room 1.8). The second and third ones, New York
and Montreal come from the official F1/10 repositories from
two actual races (Figures 7, on the centre). The fourth one,
called Extended (Figure 7 on the right), is a modified version
of the Montreal track, which we extend to a limit where the
highest possible number of particles is required. This is used
to stress corner-case behaviors. The variety of the maps shows,
in a realistic scenario, the performance/accuracy boundaries of
the PF method.

B. Performance improvement with RME

Charts in Figure 8 show how close we can get to the ideal
speed (dashed line) for an increasing number of particles
(x-axis) in the system running only on PS (red curve) and
in that accelerated on Ultra96 and ZCU102 boards (blue
and yellow curves, respectively). The points in the figures
show the maximum speed achievable by our car. Above that
speed and with that number of particles, the vehicles can no

Particles

m
/s

0

2

4

10 50 100 500 1000

PS PL_U96 PL_ZCU102 Target
Montreal - Average Speed 

Particles

m
/s

0

2

4

6

10 50 100 500 1000

PS PL_U96 PL_ZCU102 Target

Montreal - Speed max

Fig. 10: Average and Max speed for New York Dataset.

Fig. 11: Average and Max speed for Extended Montreal.

longer compute a safe trajectory, eventually smashing into
the walls. All the three series (strategies/boards) can reach
ideal max and average speed for ≈ 50 particles because this
track is “simple” for the PF. Using the RME component
onto the PL improves the FPS of the whole localisation step.
Hence, we can safely process more particles before the next
LiDAR frame. Intuitively, among the two boards, the more
powerful ZCU102 outperforms the tiny Ultra96, which has
less resources. Charts in Figure 9 are from the real New York
F1/10 track. This track is even simpler than our Room 1.8,
and the localisation succeeds for approximately 40 particles,
with PS slightly outperforming PL-based approaches. How-
ever, running localisation in pure software cannot meet the
LiDAR frequency for more than ≈ 100 particles, while, for
instance, the ZCU102 SoC can process ten times that number
of particles before missing this deadline.

The Montreal track (Figure 10) is more challenging and
requires at least ≈ 70 particles to correctly localize and run
at ideal speed. The PS version of the algorithm cannot reach
the ideal Max speed, as shown on the right in Figure 10 while
Ultra96 and ZCU102 can process up to 100 and 400 particles,



TABLE I: Latency breakdown expressed in milliseconds of Particle Filter Algorithm, varying the number of particles (p).

SW-Only RME RME+Overlay
p 60 70 80 60 70 80 60 70 80
Resample 0.65 0.99 1.09 0.65 0.99 1.09 0.65 0.99 1.09
Motion Model 0.45 0.52 0.58 0.45 0.52 0.58 0.45 0.52 0.58
Ray Marching 16.82 20.79 22.56 6.15 6.76 6.95 1.05 1.20 1.38
Compute Weights 0.91 1.06 1.24 0.91 0.91 1.24 1.83 2.16 2.46
Normalization 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Total (ms) 18.83 23.37 25.48 8.16 9.34 9.87 3.98 4.88 5.52
FPS 53.11 42.78 39.25 122.50 107.04 101.33 250.95 204.92 181.09

TABLE II: Resource Usage of different designs

LUT LUTRAM FF
Board Ultra96 ZCU102 Ultra96 ZCU102 Ultra96 ZCU102
RME 23473 175540 781 3396 27929 186731
RME+Overlay / 186430 / 3927 / 197154
Available 70560 274080 28800 144000 141120 548160
%RME 33.27 64.05 2.71 2.36 19.79 34.07
%RME+Overlay / 68.02 / 2.73 / 35.97

BRAM DSP BUFG
Board Ultra96 ZCU102 Ultra96 ZCU102 Ultra96 ZCU102
RME 207 614 58 452 3 3
RME+Overlay / 667 / 457 / 6
Available 216 912 360 2520 196 404
%RME 95.83 67.32 16.11 17.94 1.53 0.74
%RME+Overlay / 73.14 / 18.13 / 1.49

respectively. The Extended Montreal track, with its wide racing
lane and bigger size, is the most complex one, where (see
Figure 11) the pure SW implementation never reaches the
ideal speed plateau. However, the performance for PL-based
approaches keeps scaling with the number of particles, and we
can safely keep the pace of LiDAR frames for up to 100 and
500 particles, respectively, for Ultra96 and ZCU102.

C. Proxy Core

We compare our proposed design (Figure 5) to one that
only offloads the Ray Marching stage on the programmable
logic (Figure 4). We focus on a small number of particles,
i.e., the area of the previous charts where we are close to the
performance plateau, hence where we can localise the vehicle
effectively (see Figure 11). We plot performance profiles of
the three design configurations and for 60, 70 and 80 particles,
respectively, fixing the optimal number of 1081 rays. Results
are shown in Table I, for the different stages of the Particle
Filter component, namely (from left to right) for i) a pure SW
implementation running on the ARM core; ii) a system where
only the Ray Marching is implemented in FPGA PL, and iii)
our design with the Proxy core. The two accelerated systems
require data movements to copy in/out particles and data
structures to a non-paged area of the DRAM to properly feed
the accelerator. These transfers take approximately 0.03ms.
Moreover, the design (ii) also requires particles and rays to
be copied out from the Ray Marching stage, which takes
approximately 30ms. In contrast, our design (iii) only needs
to move out the results of the entire Particle Filter/Normalise
stage, i.e., the particle weights. With this design, we further
improve the end-to-end performance of the Particle Filter by
≈2-3×, compared to a design with the RME only.

We undergo a detailed assessment of our HW/SW partition-
ing and show end-to-end latency (in ms) and throughput (FPS)
metrics. The latter is representative of the needs of modern AD
systems. The LiDAR is the primary sensor for the perception
stage, while the former gives an intuition of the reaction time
of the algorithm. Camera-based perception systems are also an
interesting option. Still, their effectiveness in the localisation
task has not surpassed that of the LiDAR-based ones yet, so
we don’t consider them in this work. Table II shows the area
occupancy of our design as per the output of the Vivado tools.
In the Ultra96 board, where the FPGA resources are limited,
the IP alone occupies 96% of the BRAM. There is no room for
the Proxy Core. On the larger ZCU102 our complete design
with the HW IP and overlay uses 75% of the BRAM.

A final important thing to note is that while the Ray
Marching IP could be improved, the primary outcome is that
this design we propose is completely scalable because the
Proxy Core is a completely programmable RISC architecture.

V. RELATED WORK

Particle Filter is one of the most used methodologies for
implementing the localization task on an AD software stack.
However, there are only two practical algorithmic approaches,
one based on Bresenham [12] ray casting algorithm, while
the other is based on ray marching [7]. The latter is, on
average faster, because it makes longer steps along the query
ray, thereby avoiding unnecessary memory reads. In particular,
with 1000 particles and 61 rays, the reference Python imple-
mentation of Walsh et al. [7] reaches 1.47 FPS. It doesn’t
exploit any hardware acceleration. Also, it features a highly-
optimized data structure called Compressed Directional Dis-
tance Transform (CDDT) to represent the value range for each
discrete state 〈x, y, θ〉 and particles. Unlike them, we compute
the ranges of each particle dynamically and not statically by
accessing a data structure made offline, allowing a precise
localization. We accelerate on FPGA the additional dynamic
calculation of every ray for every particle. There are also a
few approached to ray marching based on deep learning, such
as Lin Bai’s [13]. Our deterministic sensor model functions
are based on statistical calculations for comparing particle
weights, and their precision can be increased by simply adding
more particles and rays.

The distinctive aspect of our work is that our acceleration
strategy employs a mix of hardware IPs and soft proxy
cores in the accelerator logic. There are multiple literatures
that partition the application between “hard” cores (such as
the ARM complex of the Zynq SoC) and FPGA IPs. In



Section IV we show how our approach removes unnecessarily
big data movements and outperforms such a design. D. Giri
et al. [14]–[16] propose Embedded Scalable Platform (ESP)
a novel approach to SoC design and reconfigurability that a
programmable logic-based system can offer, proving excellent
flexibility on a basic ASIC design and hardware abstraction.

K. Sugiura and H. Matsutani present an efficient hardware
implementation for Simultaneous Localization and Mapping
(SLAM) methods [17], sustaining a relatively small number
of particles, despite a very efficient data compression strategy.
The speed up the process of matching scanning on the FPGA
in 2D LiDAR SLAM method called GMapping is based on
the Rao-Blackwellized Particle Filter algorithm.

Eisoldt et. al [18] propose an approach to integrate re-
configurable SoCs into Robot Operating System (ROS). This
approach is very similar to the one we use to make the
accelerated part on FPGA interact with the rest of the driving
stack. They use Kernel-space drivers. Instead, we work at the
user-space level, increasing software flexibility and modularity
thanks to 3D-party libraries.

Similarly to us, A. Kurth et al. [19], [20] proposed a het-
erogeneous platform combining ARM Cortex-A host coupled
with a cluster of RISC-V cores, they use homogeneous clusters
while in this case it is hardware accelerator.

VI. CONCLUSION

In this work, we proposed an original system design for
next-generation automotive domain controllers based on re-
configurable embedded accelerators, such as the Xilinx Ultra-
scale+ SoC. With our design, one can deploy computational-
intensive tasks for autonomous driving systems efficiently
and in a scalable manner, with a high degree of flexibility
and power efficiency. We target a real software stack for
Autonomous Vehicles and prove how it is possible to offload
the most timing consuming part of it, namely a localization
kernel based on a particle filter Montecarlo method, in such
a way that it outperforms both pure software solutions and
traditional mixed hardware/software solutions even in with
a non-optimal (HLS-based) implementation of the hardware
module. Finally, the proposed system can be used to drive a
1/10th scale model of a car efficiently. In the future, we plan
to use it on a real vehicle and explore its applicability to more
complex modules, such as object detection with deep learning
accelerators.

VII. ACKNOWLEDGEMENTS

The authors have received funding from the ECSEL-JU
projects COMP4DRONES (No. 826610) and AI4CSM (No.
101007326).

REFERENCES

[1] NVIDIA, “NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for
New Era of AI in Robotics,” 2018. [Online]. Available: https:
//devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/

[2] J. Redmon, “YOLO: Real-Time Object Detection.” [Online]. Available:
https://pjreddie.com/darknet/yolov2/

[3] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-sign
detection and classification in the wild,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2110–
2118.

[4] M. Verucchi, G. Brilli, D. Sapienza, M. Verasani, M. Arena, F. Gatti,
A. Capotondi, R. Cavicchioli, M. Bertogna, and M. Solieri, “A system-
atic assessment of embedded neural networks for object detection,” in
2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1. IEEE, 2020, pp. 937–944.

[5] X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “A time-multiplexed
fpga overlay with linear interconnect,” in 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), 2018, pp. 1075–1080.

[6] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio et al., “F1/10:
An open-source autonomous cyber-physical platform,” arXiv preprint
arXiv:1901.08567, 2019.

[7] C. H. Walsh and S. Karaman, “Cddt: Fast approximate 2d ray casting
for accelerated localization,” Computer Science, Engineering, Mathemat-
ics 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018.

[8] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed
path,” International Journal of Control, vol. 87, no. 6, pp. 1297–1311,
2014.

[9] M. Samuel, M. Hussein, and M. Binti, “A review of some pure-pursuit
based path tracking techniques for control of autonomous vehicle,”
International Journal of Computer Applications, vol. 135, pp. 35–38,
02 2016.

[10] G. Bellocchi, A. Capotondi, F. Conti, and A. Marongiu, “A RISC-V-
based FPGA Overlay to Simplify Embedded Accelerator Deployment,”
in 2021 24th Euromicro Conference on Digital System Design (DSD).
IEEE, 2021, pp. 9–17.

[11] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “PULP: A
parallel ultra low power platform for next generation IoT applications,”
in 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 2015, pp. 1–39.

[12] L. Honglin, “Research and implementation of the fundamental algo-
rithms of computer graphics based on vc,” Proceedings of the 2016 6th
International Conference on Management, Education, Information and
Control (MEICI 2016), 2016.

[13] L. Bai, Y. Lyu, X. Xu, and X. Huang, “Pointnet on fpga for real-time
lidar point cloud processing,” 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), 2020.

[14] D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. Carloni,
“ESP4ML: Platform-based design of systems-on-chip for embedded
machine learning,” Design, Automation and Test in Europe Conference
Exhibition (DATE), Grenoble, France, 2020, 2020.

[15] D. Giri, K.-L. Chiu, G. Eichler, P. Mantovani, N. Chandramoorthy, and
L. Carloni, “Ariane + NVDLA: Seamless Third-Party IP Integration with
ESP,” Fifth Workshop on Computer Architecture Research Directions.
CARD 2019, 2019.

[16] D. Giri, P. Mantovani, and L. Carloni, “Runtime reconfigurable memory
hierarchy in embedded scalable platform,” ASPDAC ’19: Proceedings of
the 24th Asia and South Pacific Design Automation Conference, 2019.

[17] K. Sugiura and H. Matsutani, “An fpga acceleration and optimization
techniques for 2d lidar slam algorithm,” ArXiv, vol. abs/2006.01050,
2020.

[18] M. Eisoldt, S. Hinderink, M. Tassemeier, M. Flottmann, J. Vana,
T. Wiemann, J. Gaal, M. Rothmann, and M. Porrmann, “ReconfROS:
Running ROS on Reconfigurable SoCs,” in Proceedings of the 2021
Drone Systems Engineering and Rapid Simulation and Performance
Evaluation: Methods and Tools Proceedings, 2021, pp. 16–21.

[19] A. Kurth, V. Pirmin, A. Capotondi, A. Marongiu, and L. Benini, “HERO:
Heterogeneous Embedded Research Platform for Exploring RISC-V
Manycore Accelerators on FPGA,” First Workshop on Computer Ar-
chitecture Research with RISC-V (CARRV 2017), 2017.

[20] A. Kurth, A. Capotondi, V. Pirmin, L. Benini, and A. Marongiu,
“Hero: an open-source research platform for hw/sw exploration of
heterogeneous manycore systems,” 2nd Workshop on AutotuniNg and
aDaptivity AppRoaches for Energy efficient HPC Systems, ANDARE
2018 - A Workshop part of PACT 2018 Conference., 2018.


