
High-Speed Accurate Robot Control using Learned Forward
Kinodynamics and Non-linear Least Squares Optimization

Pranav Atreya1, Haresh Karnan2, Kavan Singh Sikand1,
Xuesu Xiao1, Sadegh Rabiee1, and Joydeep Biswas1

Abstract— Accurate control of robots at high speeds requires
a control system that can take into account the kinodynamic
interactions of the robot with the environment. Prior works
on learning inverse kinodynamic (IKD) models of robots have
shown success in capturing the complex kinodynamic effects.
However, the types of control problems these approaches can
be applied to are limited only to that of following pre-computed
kinodynamically feasible trajectories with a pre-determined
control objective. In this paper we present Optim-FKD, a new
formulation for accurate, high-speed robot control that makes
use of a learned forward kinodynamic (FKD) model and non-
linear least squares optimization. Optim-FKD can be used for
accurate, high speed control with arbitrary control objectives
that can be specified as non-linear least squares objectives.
Optim-FKD can solve for control objectives such as path fol-
lowing and time-optimal control in real time, without requiring
access to pre-computed kinodynamically feasible trajectories.
We empirically demonstrate these abilities of our approach
through experiments on a scale one-tenth autonomous car. Our
results show that Optim-FKD can follow desired trajectories
more accurately and can find better solutions to optimal control
problems than baseline approaches.

I. INTRODUCTION AND RELATED WORK

At moderate speeds, pure kinematic models or simple
model-based kinodynamic models are sufficient for point to
point motion control, for example, using model predictive
control [1]–[3]. Such simplified models assume that robots
only operate in a limited subspace of their entire state
space, such as low acceleration and speed, minimum wheel
slip, negligible tire deformation, and perfect non-holonomic
constraints.

However, real-world robotic missions may entail violations
of such over-simplified models [4]–[6]. For example, in
search and rescue missions where time is of the essence,
robots need to move as fast as possible in order to reach the
victims, potentially resulting in extensive side-ways slippage;
in unstructured outdoor environments, terrain characteristics
are not known a priori, and can cause inconsistent vehicle-
terrain interaction with the model simplified for homoge-
neous surfaces. All these real-world challenges motivate a
better kinodynamic model so that the control systems can
confidently extend the robot operational space into more
dynamic regimes in order to adapt to these real-world chal-
lenges.

1The University of Texas at Austin, Department of Computer Science,
{pranavatreya, kvsikand}@utexas.edu, {xiao,
srabiee, joydeepb}@cs.utexas.edu

2The University of Texas at Austin, Department of Mechanical Engineer-
ing haresh.miriyala@utexas.edu

Considering the difficulty in hand-crafting such a model
that considers a variety of factors during real-world opera-
tion, roboticists have sought help from the machine learning
community [7]. End-to-end learning is the most straightfor-
ward way to encapsulate both the model and controller in
one function approximator and to train it with data, e.g.,
learning a neural network using imitation learning [8]–[15]
or reinforcement learning [16]–[19]. Despite serving as a
successful proof-of-concept, it has been reported that the
learned systems usually do not perform as well as their
classical counterparts [7]. Leaving both model learning and
controller learning to data, such end-to-end approaches suffer
from the common drawbacks of learning approaches in gen-
eral, such as high requirement on massive training data, poor
generalizability to unseen scenarios, and most importantly, a
lack of safety assurance for navigation, which is commonly
provided by classical planning and control algorithms.

To address such disadvantages of end-to-end learning, hy-
brid approaches have been introduced that leverage existing
robot planning and control methods. For example, Wigness
et al. [20] and Sikand et al. [21] used imitation learning to
learn a cost function for existing navigation controllers to
enable adaptive behaviors for semantics. Similar techniques
have been applied to learn socially compliant navigation
[22]–[24]. Xiao et al. [25] introduced Adaptive Planner
Parameter Learning, which learns to dynamically adjust
existing motion planners’ parameters to efficiently navigate
through different obstacle configurations using teleoperated
demonstration [26], corrective interventions [27], evaluative
feedback [28], and reinforcement learning [29]. These ap-
proaches focus on using machine learning to enable custom
behaviors, such as semantic awareness, social compliance,
or smooth obstacle-avoidance.

Machine learning has also been used for high-speed robot
control [12], [30], [31]. Model Predictive Path Integral
control [32] utilizes a classical sampling based controller in
an online learning fashion: it learns a sample distribution
during online deployment that is likely to generate good
samples [33]. However, it uses a simple unicycle forward
model to predict future path based on the samples and
compensates such an over-simplified model by a massive
number of samples evaluated in parallel on GPUs [34].
Brunnbauer et al. [35] reported that model-based deep re-
inforcement learning substantially outperforms model-free
agents with respect to performance, sample efficiency, suc-
cessful task completion, and generalization in autonomous
racing. Roboticists have also investigated accurate, high-

speed, off-road navigation on unstructured terrain [36] by
learning an inverse kinodynamic model conditioned on on-
board inertia observations.

Leveraging a hybrid paradigm to address high-speed robot
control problems, our approach, which we call Optim-FKD,
falls into the model learning regime [37] and utilizes numer-
ical optimization to find optimal control sequences based on
the learned model in order to enable high-speed, accurate
robot motions. To be specific, we employ the direct modeling
paradigm [37] and learn a forward kinodynamics model to
be used in different downstream optimization tasks. The
contribution of this paper can be summarized as follows:

1) A novel formulation for robotic control using a learned
forward kinodynamic function and numerical optimiza-
tion. We demonstrate that this formulation is easily
extensible to a range of control tasks without requiring
the retraining of a new forward kinodynamic model.

2) A novel learning formulation that enables a highly
accurate forward kinodynamic model to be learned.

3) A detailed description of the system architecture re-
quired to enable the presented approach to run on real
robot hardware in real time.

4) Empirical results demonstrating that the presented ap-
proach outperforms baselines for various robot control
tasks.

II. MATHEMATICAL FORMULATION

High speed, accurate robot control as a problem can be
formulated in many different ways. Here we present two
different formulations of the problem, and show that each
formulation can be solved by the same class of solution,
namely a nonlinear least squares optimization that uses a
forward kinodynamic model.

A. Preliminaries

Let X represent the state space of the robot. X consists
of configuration space variables (such as position and orien-
tation) and dynamics variables (such as linear and angular
velocity). Let U represent the control space of the robot.
Consider a period of time of operation of the robot �t.
It is assumed that controls are executed on the robot in a
piecewise constant manner. Let � be the duration for which
a particular constant control is executed. In the time period
of operation �t, the robot will execute n = �t

� constant
controls.

To model the response of the robot from the executed
controls, we introduce a state transition likelihood function
� : X � Un � Xn ! [0; 1]. � takes as input the initial
state of the robot x0 2 X , a length-n piecewise constant
control sequence u1:n, and a length-n state sequence x1:n.
Each xi 2 x1:n represents the state of the robot at time i � � .
The output of � is the probability that the state sequence x1:n

is observed after executing u1:n beginning from x0.
We assume that the motion of the robot obeys the Markov

property, that is, the probability of reaching a state xi
depends only on the previous state xi�1 and the constant con-
trol executed beginning at that previous state ui. This induces

a local state transition likelihood function �i(xi�1; ui; xi) for
every i 2 1:::n. We can thus model � as

�(x0; u1:n; x1:n) =

nY
i=1

�i(xi�1; ui; xi) (1)

Equation 1 represents the probability that x1:n is observed
after executing u1:n from x0. It is also useful to consider
what the maximum likelihood state sequence dx1:n is after
executing u1:n from x0.

dx1:n = arg max
x1:n

�(x0; u1:n; x1:n) (2)

= arg max
x1:n

nY
i=1

�i(xi�1; ui; xi) (3)

Breaking down each generative probability �i into discrimi-
native probabilities,

�i(xi�1; ui; xi) = p(xijui; xi�1)p(xi�1jui)p(ui) (4)
= p(xijui; xi�1)p(xi�1)p(ui) (5)

where 5 comes from the fact that the previous state xi�1 is
independent from the next control. The p(xi�1) and p(ui)
terms can be dropped in equation 5 because when substituted
into equation 3 they will have no effect on the arg max.
What remains is p(xijui; xi�1) which we assume follows
a normal distribution: p(xijui; xi�1) � N (�xi; �xi

). We
represent the maximum likelihood estimate of p(xijui; xi�1)
as the forward kinodynamic function �(ui; xi�1) = �xi. With
this definition of �, equation 3 can be rewritten as

dx1:n = (�(u1; x0); :::; �(un; x̂n�1)) (6)

With these preliminaries we will now show that various
robot control problems can be expressed as nonlinear least
squares optimizations that use the forward kinodynamic
function �.

B. Objective 1: Path Following

The problem we consider here is that of following a
predefined path as closely as possible. This problem becomes
noteworthy at high speeds where accurate control of the robot
becomes increasingly more difficult.

We are given x�1:n which describes a path to follow.
Following this path as closely as possible amounts to solving

u�1:n = arg max
u1:n

�(x0; u1:n; x
�
1:n) (7)

From equation 6, this is equivalent to solving

u�1:n = arg min
u1:n

jjx�1:n � dx1:njj22 (8)

This is a nonlinear least squares formulation where each bxi 2dx1:n is determined from the forward kinodynamic function
�.

C. Objective 2: Optimal Connectivity

Another variant of the robot control problem that we
consider is traversing from a start state xi to a goal state
xf in as little time as possible. Problems of this type appear

frequently in optimal sampling-based motion planning where
algorithms like RRT* [38] and BIT* [39] require a steering
function that can time-optimally connect arbitrary states.

Consider the maximum likelihood state sequence dx1:n

from earlier. If we wanted the final state of the robot to be
as close as possible to the goal state xf , we would optimize

u�1:n = arg min
u1:n

jjxf �cxnjj22 (9)

This formulation however keeps the time that the goal state
xf is reached fixed. Specifically, the state cxn is reached after
time n �� . To also minimize the time taken to reach the goal,
n is introduced as an optimization parameter. This results in
the objective function

u�1:n; n
� = arg min

u1:n;n
jjxf �cxnjj22 + (�(n � �))2 (10)

where � is a scaling parameter that trades off time to reach
the goal and the distance to the goal. Like the path following
formulation, this formulation is a nonlinear least squares
optimization where cxn is determined from the forward
kinodynamic function �.

III. FORWARD KINODYNAMIC MODEL LEARNING

In this section we present how the forward kinodynamic
model � is learned. Since � is an integral component to the
nonlinear least squares optimizations introduced earlier, it is
key that � models the true forward kinodynamics effectively.
We learn � for a scale one-tenth autonomous robot car.

A. Dataset Generation

The FKD model � is trained in a supervised manner, and
thus needs a dataset to learn from. We obtain this dataset
by teleoperating the robot at various speeds and recording at
every timestep the state estimates of the robot and the joy-
sticked control commands. This results in a dataset D of tra-
jectories T1; :::; Tm where each trajectory Ti 2 D is a tuple
of the form (vx(t); vy(t); !(t); x(t); y(t); �(t); �(t); (t)).
Here, vx(t) is the velocity in the x-direction, vy(t) is the
velocity in the y-direction, !(t) is the angular velocity, x(t)
is the x-position, y(t) is the y-position, �(t) is the orientation,
�(t) is the commanded forward velocity, and (t) is the
commanded angular velocity. All of these functions are time-
dependent and are defined in the domain [0; t

(i)
f] where t(i)f

is the termination time for trajectory Ti.

B. Learning Formulation

The formulation presented earlier for � maps an initial
state of the robot and a constant control to the most likely
next state of the robot. Learning this exact formulation, while
in theory would work fine, in practice does not yield good
performing FKD models. This is because the model is tasked
with predicting the state after � units of time, which in most
cases is very close to the current state since � is selected to
be small. This means the model can get away with simply
predicting the current state without incurring much loss. In
order to ensure the model’s predictions are of high quality,

the model needs to learn to model the state of the robot after
a time period much greater than � .

We achieve this longer prediction horizon by training � in
a recurrent fashion. Simply increasing � would not suffice
since that would forego the fine-grained prediction capa-
bilities of the model. The basic structure of the recurrence
formulation is as follows. The model predicts the next state
xi = �(ui; xi�1). For timestep i+ 1, instead of being given
access to the ground truth value of xi, the model uses its
previous prediction as the starting state: xi+1 = �(ui+1; xi).
This process continues for the number of timesteps in the
prediction horizon.

This simple recurrent approach has a few limitations
however. The base timestep duration � is selected to be small
so as to capture minute changes in the state of the robot. In
our experiments we set � to 0:05 seconds. For the model to
predict the state of the robot after time tpred, tpred

� forward
passes through the model are needed. In our experiments, we
set tpred to 3:0 seconds, requiring 60 forward passes through
the model. Since � is to be used in a real-time optimization
framework, the number of forward passes through � need to
be limited to maintain computational efficiency. We achieve
this by introducing a model prediction time tmodel. The FKD
model �, in one forward pass, outputs the next tmodel

� states
given the next tmodel

� controls. It also takes in as input the
previous tmodel

� states, enabling recurrence. In our experi-
ments tmodel was set to 0:5 seconds. This approach enables
both computational efficiency and fine-grained prediction.

Having motivated the model formulation, we now present
the learning objective. For each trajectory Ti in our dataset
D, we evenly sample k starting times (t1; :::; tk) from the
range [tmodel; t

(i)
f � tpred]. For each starting time ta 2

(t1; :::; tk), we will use the model to predict the states at
times ta+b� for b 2 [0; 1; :::;

tpred

�]. For brevity, let Sta be the
state variables vx(t); vy(t); !(t); x(t); y(t), and �(t) sampled
evenly with spacing � from the time period [ta; ta + tmodel].
Additionally let Mta be the control variables �(t) and (t)
sampled in the same manner. The model � takes in as input
Mta and Sta�tmodel

and produces as output ~Sta . ~Sta differs
from Sta in that the former is the model’s prediction whereas
the latter is the ground truth. Taking everything into account,
we obtain the following learning objective

arg min
�

X
Ti2D

X
ta2(t1;:::;tk)

tpred
tmodel

�1X
i=0

jj�(~Sta+tmodel�(i�1);

Mta+i�tmodel
)� Sta+i�tmodel

jj22
(11)

where � is the parameter set of � and ~Sta�tmodel
=

Sta�tmodel
for the case i = 0.

IV. OPTIMIZATION SYSTEM ARCHITECTURE

Here we describe the system architecture of the proposed
approach. We discuss how to integrate the optimization
procedure and calls to the FKD model in a manner that
enables real-time control on real robot hardware. Figure 1
shows a block diagram of the system components. There are

Fig. 1: System architecture block diagram.

four key components that all operate asynchronously: the
state estimator, optimizer, updater, and executor.

A. State Estimator

In order for a predefined path to be followed accurately or
for a goal state to be reached as fast as possible, accurate state
estimates of the robot are essential. These state estimates
define the robot’s position, orientation, velocity, and angular
velocity with respect to some coordinate frame. The state
estimates themselves can come from a variety of sources
such as a LIDAR based localization algorithm or visual
odometry. It is assumed that there exists some delay �
between the actual, real-world state of the robot and what
the state estimator outputs. The state estimator operates
asynchronously, continuously updating a fixed sized buffer
of the most recent state estimates. It is critical that each
state estimate in the buffer is timestamped.

B. Optimizer

The optimizer begins by obtaining from the state buffer
the most recent estimated state of the robot �. This state will
be used as the start state in the optimization procedure. Now,
depending on the optimization objective, different steps must
be taken. For the path following objective, it is critical to first
localize the robot on the map that the robot is desired to
follow. Let P be the path that the robot is assigned to follow
at speed vdesired. P consists of a series of robot positions
x; y; � ordered in increasing order by which each position
is to be reached by the robot. Each optimization will plan
the next �t controls for the robot. To do this, the goal state
g 2 P the robot needs to reach after time �t needs to be
determined. Localizing the robot in P amounts to finding
the position s 2 P that minimizes jj� � sjj22. g can then
be obtained by computing g = P ⇝ vdesired � �t where
the a ⇝ b operator looks ahead in P from position a by b
distance.

Next, the optimizer must prepare the input required by
the forward kinodynamic model, namely the past tmodel units
time of robot state information. This is done by running time
synchronization on the states in the state buffer by making
use of the states’ timestamps to sample tmodel

� evenly spaced
states. Finally the optimization procedure is called, which
internally will optimize over the next �t of controls by

Fig. 2: UT-Automata F1Tenth Robot Car

making �t
tmodel

calls to the FKD model. The result u� along
with � is stored in a concurrency-safe data structure. Note
that the optimization horizon �t differs from the prediction
horizon tpred in equation 11.

C. Updater

The main role of the updater is dealing with latencies
that are characterstic of real robot systems. We consider the
two most impactful latencies: �, the previously introduced
latency in the state estimators measurements, and i, the
time required for optimization i to complete. Since i is
different for every run of the optimizer, it needs to first be
computed. This is done by computing the difference between
the current system time and the timestamp of � that was used
as the starting state of the optimization procedure. The first
i + � time units of controls are discarded from u�, and the
remainder replaces the contents of the control buffer.

D. Executor

Finally, the executor asynchronously executes the com-
mands stored in the control queue one at a time on the robot.
If the forward kinodynamic model � had been learned well,
the evolution of the state of the robot after executing the
controls will closely match the predicted state sequence by
the model, meaning the controls output by the optimization
procedure are the desired ones.

V. EXPERIMENTS

To evaluate the performance of our proposed Optim-
FKD approach, we perform two sets of experiments, each
involving a different variant of the robot control problem.
We demonstrate the ability of Optim-FKD to successfully
complete both, and show improved performance over an
optimization-free, IKD model baseline.

A. Experimental Setup

The robot platform used for our experimentation is the
UT-Automata F1tenth Car depicted in figure 2. We make
use of the car’s Intel Realsense T265 tracking camera for
localization and its Nvidia Jetson TX2 for compute.

We consider two different experimental setups, each in-
volving a different form of the robot control problem and
thus a different optimization objective. For the first task we

