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Abstract—Autonomous vehicles are latency-sensitive systems.
The planning phase is a critical component of such systems,
during which the in-vehicle compute platform is responsible
for determining the future maneuvers that the vehicle will
follow. In this paper, we present a GPU-accelerated optimized
implementation of the Frenet Path Planner, a widely known
path planning algorithm. Unlike the current state-of-the-art, our
implementation accelerates the entire algorithm, including the
path generation and collision avoidance phases. We measure the
execution time of our implementation and demonstrate dramatic
speedups compared to the CPU baseline implementation. Ad-
ditionally, we evaluate the impact of different precision types
(double, float, half) on trajectory errors to investigate the trade-
off between completion latencies and computation precision.

Index Terms—Planning, Autonomous vehicle, Parallel, GPU,
Racing

I. INTRODUCTION

AUTONOMOUS vehicles (AVs) are nowadays adopted
in complex and safety-critical scenarios, such as urban

driving and race competitions. AVs are composed of different
phases such as path planning and collision avoidance. These
phases are latency-sensitive since their execution time must be
proportional to the vehicle speed [1], [2], [3]. For this reason,
AVs require to efficiently process a significant amount of data
within the onboard computing systems in a timely fashion.
Therefore, high-performance embedded computers featuring
highly parallel accelerators such as GPUs, are key enabling
technologies. These platforms are amenable to accelerating the
complex algorithms of autonomous vehicles. In this work, we
focus on the Local Planner phase of the autonomous vehicles
pipeline and we propose a novel implementation of the well-
known Frenet Path Planner algorithm that exploit the GPU
acceleration. We can summarize the contribution of this paper
as follows: 1) We propose a novel GPU implementation for the
Frenet Path Planner algorithm. To the best of our knowledge,
the proposed implementation is the only one that ports on GPU
the entire algorithm pipeline. 2) We test our proposal using
different precision types (double, float, half ), aiming at un-
derstanding the impact on execution time and on the precision
of the generated trajectories. 3) We measure the impact of the
proposed implementation both in terms of execution time and
precision compared to a baseline CPU implementation. 4) We
made the source code of our implementation publicly avail-
able(https://github.com/HiPeRT/FrenetTenth) and, to the best
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of our knowledge, this represents the first publicly available
GPU-based Frenet Path Planner implementation.

II. RELATED WORK

The Planning problem has been extensively studied in pre-
vious literature. In [4] and [5], for example, a path is generated
considering kinematic and dynamic constraints. The dynamic
model is also considered in [6], in which a spatiotemporal
lattice with vehicle feasible states is proposed. Similarly in [7]
and [8] the kinematics quantities are optimized to find the
path. In the race context, a fully reactive planner called
the Follow The Gap method (FTG) [9] is used. It avoids
collisions by aiming at the center of the maximum gap among
obstacles. The model predictive control is used in [10], [11],
[12]. In [13] the problem is formulated as an optimization
problem and it is solved using the gradient descent method.
Another approach is to generate a single path and iteratively
improve it [14]. Lastly, some contributions are based on the
generation of different paths to then choose the best one [15],
[16] according to predefined metrics. The Rapid Exploring
Random Tree algorithm [17] is used in [18] and [19]. In [16]
the authors use Frenet Coordinates to split the generation of
lateral and longitudinal movements and in [20] the authors
consider dynamic objects. Our work exploits Frenet Coordi-
nates and will focus on an optimized GPU implementation in
which the performance analysis will also account for different
settings w.r.t. data type precision. In the study [21], GPU
acceleration was applied solely to the path generation in Frenet
Coordinates, while other phases like obstacle avoidance were
not ported to the GPU. In contrast, our work includes both
obstacle avoidance and the best path selection on the GPU. We
use NVIDIA CUDA to exploit GPU parallelism in different
ways: using parallel threads [22], exploiting Shared Memory
and syncthread directive; overlapping computing and memory
transfers using Streams and Events [23].

III. FRENET PATH PLANNER

The path planning phase of an autonomous driving system
consists of the generation of a path that the vehicles can safely
follow. Typically such a path is discretized and it is represented
as a list of path points. The Frenet Path Planner [16] uses the
Frenet Coordinates [24], [25] to generate a set of paths. Those
paths are converted into the World coordinates for collision
check with the obstacles present in the environment. Finally,
between the paths that do not show any potential collision,
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the best path is chosen based on a cost function. Consid-
ering the actual vehicle position in the Frenet Coordinates
(s0,d0), a single path is a contiguous trajectory that links
(s0,d0) to a final position (sf ,df ), the corresponding velocities
and accelerations are expressed as ṡ, s̈, ḋ, d̈. The Frenet Path
Planner generates a set of paths that start from (s0,d0) and
terminate in a possible endpoint (sf ,df ). This set is generated
considering: 1) the initial state S0 =< s0, d0, ṡ0, ḋ0, d̈0 >;
and 2) a candidate end state Sf =< sf , df , ṡf , ḋf , d̈f >.
Each value of each end state leads to a range of possible
values chosen as parameters. The path that links the start
state to the end state is computed resolving two linear systems
(see [16] for details). The path is discretized in f points, so
to define a list of path points P = [p0, p1, ...pf ] and it has
an associated cost typically determined by the path jerk. The
path P is expressed in Frenet Coordinates, therefore it must
be reconverted back to World coordinates. At this point each
path P is tested for collisions against obstacles that might be
present in the environment. The distance between each path
point and each obstacle is computed and the path is filtered out
if it will collide with some obstacle. Finally, the path with the
best cost and that does not collide with obstacles is returned
as the path to follow.

IV. OUR IMPLEMENTATION

We provide a novel GPU-based implementation of Frenet
Planner. The goal is to reduce the computational time of the
algorithm. Since, in the first part, each path is generated inde-
pendently, we have exploited GPU parallelism for this work.
Moreover, each point p ∈ P can be computed independently.
We set up a CUDA kernel with a three-dimensional launch grid
that would allow us to compute each path concurrently (see
Figure 1a): in each dimension, there is a different parameter
and each block has a different value that this parameter can
have. Moreover, we have mapped the computation of the
points of a path to a different thread of the block associated
with the path itself. By doing so, each thread computes the
point of the path considering a different value of t. In this
phase also the Word Coordinate of each point and the cost
of the path is computed. Since all points of a path must be
computed before performing the cost computation, we use
the synchthread primitive to ensure that all threads associated
with the path are finished. At this point, one selected thread
performs the reduction to retrieve the path cost exploiting the
Shared Memory of the GPU. For the next phase, in which each
path is checked among all obstacles, we have implemented a
CUDA kernel that performs each test in parallel. If the check
fails, then the path of the point is marked as collided and the
cost of the path is set to the maximum value to ensure that
it will not be chosen as the best path. The kernel is launched
spreading all path points on different threads; each block has
a fixed dimension of 16 × 16 × 4 threads (resp. on x, y and
z axes), for a total of 1024 threads per block (TPB). The
grid is composed of an amount of blocks that is adequate to
cover the total number of points (TNP ) on axes x and y, the
axis z is used to map the obstacles (see Figure 1b). When all
paths are checked, the one with the smaller cost is retrieved

(a) Paths Generation.

(b) Paths Generation.

Fig. 1: CUDA launch configurations.

using a CUBlas API function call; specifically, by invoking the
function cublasI<T>amin1. This function returns the index of
the smaller item. Given that the paths that collide have the
maximum cost and the best path choice procedure returns the
path with the smallest cost value. If the retrieved best path is
marked as collided, it means that there are no feasible paths
around the generated trajectories.

V. RESULTS

We compared our implementation (GPU) with a publicly
available CPU implementation of the Frenet Planner2 (CPU),
with the same implementation using OpenMP3 to exploit
CPU parallelism (CPUOMP), and with the state-of-the-art
GPU implementation [21] (GPUSotA). The authors of [21]
did not share their code; we replicated it. We performed the
comparison by varying the precision type (half, float, double).
These precision types have different data sizes as defined by
IEEE standard [26] and this means a different amount of data
to exchange between CPU and GPU but also different accuracy
in the results. We performed our tests on an NVIDIA Xavier
AGX. This embedded board is equipped with a CUDA-capable
GPU (512 NVIDIA cores) and an ARM CPU (8 cores). It
features 32GB of DDR SDRAM. We performed two types of
measures. One varying the number of generated paths while
maintaining a fixed path length, and the other varying lengths
while maintaining a fixed number of generated paths. For
each test, we have performed 100 iterations, and we report
the average time. The average overall execution times for
these two variants are reported in Figure 2, with Figure 2a
displaying the results for the varying number of generated
paths and Figure 2b displaying the results for the varying path
length. Our GPU implementation is significantly faster than
the other implementations (including SotA). The precision
type impacts the execution time, indeed, the execution time
is higher using double precision than using float or half. The

1https://docs.nvidia.com/cuda/cublas/index.html#cublasi-lt-t-gt-amin
2https://github.com/arvindjha114/frenet planner agv
3https://www.openmp.org/
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(a) Ex. Time - Varying numbers of generated paths

(b) Ex. Time - Varying the path length

Fig. 2: Overall average execution time (ms)

execution times of the latter two types are similar but half
type produces a lower execution time. Indeed, on GPU, using
the float precision type the times, on average, are reduced by
about 74 ms with respect to double in the first experiment,
and about 36 ms in the second; using the half precision type,
the reduction is by about 3 ms with respect to float in the
first experiment, and about 1 ms in the second. The trend
of all implementations is linear but the CPU implementation
shows a steeper trend due to its serialized processing. In the
first experiment (varying the number of generated paths) the
speedup achieved by GPU implementation with respect to the
CPU implementation using the same precision is constant for
double (around 11x), increases up to 20x for float precision,
and up to 22x for half precision. In the second experiment
(varying the path length) the speedup is less constant but has
the same average values as the first experiment. The GPU
implementation of Path generation phase is constructed ex-
ploiting shared memory and minimizing the critical operations
of a GPU accelerated application, i.e. accesses to global mem-
ory and branch divergence. Moreover, the merging of World
coordinates conversion in the same kernel of Path generation
reduces the overhead of kernel launches. Moreover, we elected
to implement data transfers between the host (CPU) and the
device (GPU) using explicit copies to have more control over
these operations and be able to execute them in parallel to the
kernel execution using Streams. In this manner, we can copy
the obstacles data (required by the collision check task) during
the path generation effectively nullifying the memory copy
overhead. Finally, performing the best path choice on GPU
reduces the number of memory copies between the CPU and
GPU. Indeed, only the best path is copied instead all. These
aspects contribute to the huge execution time reduction of this
phase with respect to the CPU implementation (up to 22x)
and the GPU SotA (up to 8x) since the first (also OMP) has

Fig. 3: Trajectory error for each point

sequential phases (like best path choice), and the second does
not consider the memory copies overhead. Due to this, OMP
and GPU SotA lack huge speedup compared to the baseline.

A. Precision error

Using fewer bits to represent input and output data leads
to a significant reduction in execution times. We investigate
how reducing data type precision and the different hardware
architectures affect the quality of the computed trajectories.
We compared the trajectories generated using the different
data precision formats in both CPU and GPU implementations
with respect to trajectories generated by the CPU double
implementation (henceforth our baseline). We compare paths
generated by different precision types but with the same
parameters and the Frenet algorithm was set to generate 1024
different paths, each of them with 1024 path points. On top
of this, we have simulated a vehicle that follows the selected
path but when it reaches a new location it generates again the
path to follow. In this way, the generated paths will always
feature a different initial state and this is the typical behavior
of a vehicle that uses the Frenet path planner. We repeat the
generation 300 times and we compare each point of each
selected path. We have used the Average Trajectory Error
(ATE) which is the average displacement error of each point of
the path. The displacement error is computed as the Euclidean
Distance. As expected the ATE is 0m for GPU double imple-
mentation. On the other hand half precision shows a larger
error (0.7747m in GPU and 0,6183m in CPU) due to the fact
that the reduced precision impacts the results. The error in the
float versions is negligible (0.0005m in GPU and 0,0027m
in CPU). GPU employs distinct hardware for floating-point
operations compared to the CPU, leading to variations in
rounding modes and ultimately causing discrepancies in the
final results. We also report in Figure 3 the errors for each
point of the path, from 0 to 1024. For each point, we report
the mean error measured in each of the 300 paths. We can
see that the error within a trajectory increases as the vehicle
move further from the path starting point, hence, the precision
error tends to maximize towards the last points. Typically, the
vehicle follows the selected path for the first points and then
recomputes it based on the new state, i.e. its new position;
therefore, it is unlikely that the vehicle will reach the ending
points that were initially generated. This aspect is crucial
since we previously highlighted that precision errors are more
significant towards those final points, as the trajectory is
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constantly re-generated, and the path final points are almost
never reached. For this reason, it does make sense to measure
the average error of the path traveled by the vehicle using
the sequence of selected paths computed during the trip. We
measured the ATE of the trajectory of the simulated vehicle
that moves as described above. By doing so we obtain the
following errors: 0.5993m for half GPU (0,4801m on CPU),
0.0001m for float GPU (0,0025 on CPU), and always 0m
for double GPU. Qualitatively, the errors reported for float
and half precision do not impact the quality of the generated
trajectory due to the fact that the average error is small and
allows the vehicle to avoid obstacles. Indeed, in all cases, the
simulated vehicle is able to avoid an obstacle, so the error
does not mine the safety of generated trajectory. To conclude,
by decreasing data precision we obtain noticeable performance
improvements in execution times (especially using GPU). This
comes at the cost of larger ATE values. The choice of precision
within data types depends on the context; our experiments,
however, clearly show how the float version on GPU easily
represents the best choice, as it leads to an extremely low
ATE compared to the huge execution time reduction (60% of
time reduction respect to double on GPU).

VI. CONCLUSION

In this work, we proposed a novel and optimized GPU
implementation of the Frenet Path Planner algorithm. To the
best of our knowledge, this is the first implementation that
ports the entire algorithm pipeline on GPU. Moreover, we
release the source code of our implementation. We investigated
the execution time of our implementation compared to the
other CPU and GPU SotA implementations and we obtain a
speedup of up to 22x. Moreover, we investigated the execution
time using different data types: double, float, half. Regarding
this aspect, we also investigated the impact on trajectory
precision when varying these data types. The results confirm
that using our implementation with float is the best trade-off
between computational time and trajectory precision. In future
work, we plan to investigate the use of CUDA Unified Virtual
Memory (UVM) instead of explicit memory copies and to
integrate in our implementation a trajectory prediction for the
surrounding vehicles in order to manage dynamic obstacles.
Lastly, we want to perform an energy consumption analysis.
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